Patents by Inventor Masami Shimokawa

Masami Shimokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230309331
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 28, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuta HASEGAWA, Nobuyuki MATSUZAWA, Yoshiaki OBANA, Ichiro TAKEMURA, Norikazu NAKAYAMA, Masami SHIMOKAWA, Tetsuji YAMAGUCHI, Iwao YAGI, Hideaki MOGI
  • Patent number: 11700733
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: July 11, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuta Hasegawa, Nobuyuki Matsuzawa, Yoshiaki Obana, Ichiro Takemura, Norikazu Nakayama, Masami Shimokawa, Tetsuji Yamaguchi, Iwao Yagi, Hideaki Mogi
  • Publication number: 20210320149
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Application
    Filed: June 3, 2021
    Publication date: October 14, 2021
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuta HASEGAWA, Nobuyuki MATSUZAWA, Yoshiaki OBANA, Ichiro TAKEMURA, Norikazu NAKAYAMA, Masami SHIMOKAWA, Tetsuji YAMAGUCHI, Iwao YAGI, Hideaki MOGI
  • Patent number: 11056539
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: July 6, 2021
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yuta Hasegawa, Nobuyuki Matsuzawa, Yoshiaki Obana, Ichiro Takemura, Norikazu Nakayama, Masami Shimokawa, Tetsuji Yamaguchi, Iwao Yagi, Hideaki Mogi
  • Publication number: 20200006435
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Application
    Filed: July 3, 2019
    Publication date: January 2, 2020
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuta HASEGAWA, Nobuyuki MATSUZAWA, Yoshiaki OBANA, Ichiro TAKEMURA, Norikazu NAKAYAMA, Masami SHIMOKAWA, Tetsuji YAMAGUCHI, Iwao YAGI, Hideaki MOGI
  • Patent number: 10374015
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: August 6, 2019
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Yuta Hasegawa, Nobuyuki Matsuzawa, Yoshiaki Obana, Ichiro Takemura, Norikazu Nakayama, Masami Shimokawa, Tetsuji Yamaguchi, Iwao Yagi, Hideaki Mogi
  • Publication number: 20180151624
    Abstract: A photoelectric conversion element according to an embodiment of the present disclosure includes: a first electrode and a second electrode facing each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material, a second organic semiconductor material, and a third organic semiconductor material that have mother skeletons different from one another. The first organic semiconductor material is one of fullerenes and fullerene derivatives. The second organic semiconductor material in a form of a single-layer film has a higher linear absorption coefficient of a maximal light absorption wavelength in a visible light region than a single-layer film of the first organic semiconductor material and a single-layer film of the third organic semiconductor material. The third organic semiconductor material has a value equal to or higher than a HOMO level of the second organic semiconductor material.
    Type: Application
    Filed: May 19, 2016
    Publication date: May 31, 2018
    Inventors: Yuta HASEGAWA, Nobuyuki MATSUZAWA, Yoshiaki OBANA, Ichiro TAKEMURA, Norikazu NAKAYAMA, Masami SHIMOKAWA, Tetsuji YAMAGUCHI, Iwao YAGI, Hideaki MOGI
  • Patent number: 5366792
    Abstract: A laminated non-woven fabric comprising a laminated material of an intermediate layer of a melt-blown non-woven fabric obtained by melt-blowing an olefin-type resin, an inner and outer layers of a spun-bonded non-woven fabric which chiefly consists of polyester-type fibers and in which the fibers are bonded together locally and at a coarse density, wherein the fibers constituting the inner and outer layers are inserted in the melt-blown non-woven fabric and are intermingled with fibers in the melt-blown non-woven fabric or in the spun-bonded non-woven fabrics of the opposite sides, so that the layers are coupled together as a unitary structure, and a process for producing the same.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: November 22, 1994
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Ryutaro Shirayanagi, Masaki Shimizu, Masami Shimokawa