Patents by Inventor Masamichi Hikosaka

Masamichi Hikosaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11352470
    Abstract: The present invention achieves higher performance (improvement in, for example, heat resistance, durability, and mechanical characteristics) of polyamide resin by a method which is not dependent on a combination with fibers. According to an embodiment of a polyamide resin member of the present invention, the polyamide resin member contains nano-oriented crystals of polyamide 66, and has a high heatproof temperature (Th?278° C.) and a high melting point (Tm?282° C.).
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 7, 2022
    Assignee: BRIDGESTONE CORPORATION
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Kenichiro Iwasaki, Kei Yasui, Katsuomi Tanahashi, Katsumi Nabeshima, Mai Ishikawa
  • Publication number: 20210017375
    Abstract: The invention provides a molded article having excellent mechanical strength, heat resistance, surface roughness, and ferroelectricity. The molded article contains a crystal of a vinylidene fluoride/tetrafluoroethylene copolymer. The crystal is a ? crystal and is a nano-oriented crystal that has a size of 100 nm or smaller. The molded article has an arithmetic average roughness of 3.0 ?m or lower.
    Type: Application
    Filed: March 27, 2019
    Publication date: January 21, 2021
    Applicants: HIROSHIMA UNIVERSITY, DAIKIN INDSTRIES, LTD.
    Inventors: Masamichi HIKOSAKA, Kiyoka OKADA, Toshiyuki FUKUSHIMA, Kyouhei SAWAKI, Ken OKANISHI, Yasuyuki YAMAGUCHI
  • Publication number: 20200157295
    Abstract: The present invention achieves higher performance (improvement in, for example, heat resistance, durability, and mechanical characteristics) of polyamide resin by a method which is not dependent on a combination with fibers. According to an embodiment of a polyamide resin member of the present invention, the polyamide resin member contains nano-oriented crystals of polyamide 66, and has a high heatproof temperature (Th?278° C.) and a high melting point (Tm?282° C.).
    Type: Application
    Filed: May 9, 2018
    Publication date: May 21, 2020
    Applicant: BRIDGESTONE CORPORATION
    Inventors: Masamichi HIKOSAKA, Kiyoka OKADA, Kenichiro IWASAKI, Kei YASUI, Katsuomi TANAHASHI, Katsumi NABESHIMA, Mai ISHIKAWA
  • Patent number: 10420209
    Abstract: The polyester sheet in accordance with an aspect of the present invention contains crystals of polyester which is a polycondensate of polyvalent carboxylic acid and polyalcohol. The polyester sheet contains nano-oriented crystals which contain crystals of polyester in each of which a polymer chain is highly oriented and each of which has a crystal size of 50 nm or less. A heatproof temperature of the polyester sheet is higher than a temperature that is lower than an equilibrium melting point of the polyester by 80° C., and a melting point of the polyester sheet is higher than a temperature that is lower than the equilibrium melting point of the polyester by 40° C.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: September 17, 2019
    Assignee: HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Yoshitaka Tanaka
  • Publication number: 20170295645
    Abstract: The polyester sheet in accordance with an aspect of the present invention contains crystals of polyester which is a polycondensate of polyvalent carboxylic acid and polyalcohol. The polyester sheet contains nano-oriented crystals which contain crystals of polyester in each of which a polymer chain is highly oriented and each of which has a crystal size of 50 nm or less. A heatproof temperature of the polyester sheet is higher than a temperature that is lower than an equilibrium melting point of the polyester by 80° C., and a melting point of the polyester sheet is higher than a temperature that is lower than the equilibrium melting point of the polyester by 40° C.
    Type: Application
    Filed: August 24, 2015
    Publication date: October 12, 2017
    Applicants: HIROSHIMA UNIVERSITY, TEIJIN FILM SOLUTIONS LIMITED
    Inventors: Masamichi HIKOSAKA, Kiyoka OKADA, Yoshitaka TANAKA
  • Patent number: 9605116
    Abstract: A method for secondary-molding a polymer nano oriented crystal material in accordance with an embodiment of the present invention includes the steps of: heating the polymer nano oriented crystal material so that the polymer nano oriented crystal material changes into a mobile phase or a melt having a dense entanglement network structure; molding the polymer nano oriented crystal material which changed into the mobile phase or the melt including the dense entanglement network in the step; and cooling the polymer nano oriented crystal material, which has undergone the step, until the polymer nano oriented crystal material changes into an ordered phase.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 28, 2017
    Assignees: SUNALLOMER LTD., HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Junichiro Washiyama, Takeshi Nakajima, Yuka Akiyama, Shingo Ueno
  • Patent number: 9138933
    Abstract: A process and apparatus for manufacturing a crystalline resin film or sheet. This manufacturing apparatus includes: an extruder that melts crystalline resin while supplying it; a gear pump that is provided on the downstream side of the extruder; a die which is provided on the downstream side of the gear pump, and which has a slit-shaped aperture; a cooling apparatus which cools film-shaped or sheet-shaped crystalline resin (A) discharged in a melted state from the die to a temperature which is not less than the crystallization temperature but not more than the melting point; and a pair of pinch rolls that press-roll between them the film-shaped or sheet-shaped crystalline resin (B) which has passed through the cooling apparatus (40), wherein the pair of guide rolls are positioned such that the thickness of the film-shaped or sheet-shaped crystalline resin (B) which has passed through the cooling apparatus is between 1.3 and 8.0 times the thickness of the film or sheet (C, D) after it has been press-rolled.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: September 22, 2015
    Assignee: SunAllomer Ltd.
    Inventors: Junichiro Washiyama, Hideharu Kimura, Koji Yamada, Takeshi Nakajima, Akihiro Otsubo, Masamichi Hikosaka, Kiyoka Okada, Kaori Watanabe
  • Patent number: 8735523
    Abstract: One embodiment of the present invention provides polymer crystalline materials containing crystals of the polymer and satisfying the following requirements (I) and (II) or the following requirements (I) and (III): (I) the polymer crystalline materials a crystallinity of 70% or greater; (II) the crystals are 300 nm or less in size; and (III) the crystals have a number density of 40 ?m?3 or greater. This allows an embodiment of the present invention to provide polymer crystalline materials which are excellent in properties such as mechanical strength, heat tolerance, and transparency or, in particular, polymer crystalline materials, based on a general-purpose plastic such as PP, which is excellent in properties such as mechanical strength, heat tolerance, and transparency.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: May 27, 2014
    Assignee: Hiroshima University
    Inventors: Masamichi Hikosaka, Kaori Watanabe, Kiyoka Okada
  • Patent number: 8728616
    Abstract: A polymer sheet according to at least one embodiment of the present invention is a polymer sheet whose main component is oriented nanocrystals of a polymer, and which satisfies the following conditions (I), (II), and (III): (I) having a crystallinity of not less than 70%; (II) having a tensile strength at break of not less than 100 MPa and a tensile modulus of not less than 3 GPa; and (III) having an average thickness of not less than 0.15 mm. According to at least one embodiment of the present invention, it is possible to provide a polymer sheet excelling in properties such as mechanical strength, heat tolerance, and transparency, particularly a polymer sheet having excellent properties such as mechanical strength, heat tolerance, and transparency in general-purpose plastics such as polypropylene.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: May 20, 2014
    Assignees: Hiroshima University, Sunallomer Ltd.
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Kaori Watanabe, Junichiro Washiyama, Hideharu Kimura, Koji Yamada, Takeshi Nakajima, Akihiro Otsubo
  • Publication number: 20130196168
    Abstract: A method for secondary-molding a polymer nano oriented crystal material in accordance with an embodiment of the present invention includes the steps of: heating the polymer nano oriented crystal material so that the polymer nano oriented crystal material changes into a mobile phase or a melt having a dense entanglement network structure; molding the polymer nano oriented crystal material which changed into the mobile phase or the melt including the dense entanglement network in the step; and cooling the polymer nano oriented crystal material, which has undergone the step, until the polymer nano oriented crystal material changes into an ordered phase.
    Type: Application
    Filed: October 7, 2011
    Publication date: August 1, 2013
    Applicants: SUNALLOMER LTD., HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Junichiro Washiyama, Takeshi Nakajima, Yuka Akiyama, Shingo Ueno
  • Publication number: 20120018917
    Abstract: A process and apparatus for manufacturing a crystalline resin film or sheet. This manufacturing apparatus includes: an extruder that melts crystalline resin while supplying it; a gear pump that is provided on the downstream side of the extruder; a die which is provided on the downstream side of the gear pump, and which has a slit-shaped aperture; a cooling apparatus which cools film-shaped or sheet-shaped crystalline resin (A) discharged in a melted state from the die to a temperature which is not less than the crystallization temperature but not more than the melting point; and a pair of pinch rolls that press-roll between them the film-shaped or sheet-shaped crystalline resin (B) which has passed through the cooling apparatus (40), wherein the pair of guide rolls are positioned such that the thickness of the film-shaped or sheet-shaped crystalline resin (B) which has passed through the cooling apparatus is between 1.3 and 8.0 times the thickness of the film or sheet (C, D) after it has been press-rolled.
    Type: Application
    Filed: January 22, 2010
    Publication date: January 26, 2012
    Applicant: SunAllomer Ltd.
    Inventors: Junichiro Washiyama, Hideharu Kimura, Koji Yamada, Takeshi Nakajima, Akihiro Otsubo, Masamichi Hikosaka, Kiyoka Okada, Kaori Watanabe
  • Publication number: 20110300364
    Abstract: A polymer sheet according to at least one embodiment of the present invention is a polymer sheet whose main component is oriented nanocrystals of a polymer, and which satisfies the following conditions (I), (II), and (III): (I) having a crystallinity of not less than 70%; (II) having a tensile strength at break of not less than 100 MPa and a tensile modulus of not less than 3 GPa; and (III) having an average thickness of not less than 0.15 mm. According to at least one embodiment of the present invention, it is possible to provide a polymer sheet excelling in properties such as mechanical strength, heat tolerance, and transparency, particularly a polymer sheet having excellent properties such as mechanical strength, heat tolerance, and transparency in general-purpose plastics such as polypropylene.
    Type: Application
    Filed: January 21, 2010
    Publication date: December 8, 2011
    Applicants: SUNALLOMER LTD., HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kiyoka Okada, Kaori Watanabe, Junichiro Washiyama, Hideharu Kimura, Koji Yamada, Takeshi Nakajima, Akihiro Otsubo
  • Patent number: 7871548
    Abstract: A method and means for determining a critical elongation strain rate of a polymer melt, which make it possible to subject a polymer melt to elongation to prepare a bulk oriented melt, are established, and a process for producing bulk polymer oriented crystals and polymer oriented crystals are provided. In the critical elongation strain rate determination process or critical elongation strain rate determining method, a polymer melt (3) in a disc shape having a radius x0 and a thickness of ?z0 is held between transparent plates (an upper transparent plate (1) and a lower transparent plate (2)). The polymer melt (3) is cooled to a supercooled state and is press in a thickness direction at a constant rate v by using the transparent plates. The critical point radius x*, at which the polymer melt (3) is turned to an oriented crystal, is measured, and the critical elongation strain rate ? is calculated by equation ?*=ax*3 wherein ?=v/(2?z0x03).
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: January 18, 2011
    Assignee: National University of Corporation Hiroshima University
    Inventors: Masamichi Hikosaka, Kaori Watanabe
  • Publication number: 20100063235
    Abstract: One embodiment of the present invention provides polymer crystalline materials containing crystals of the polymer and satisfying the following requirements (I) and (II) or the following requirements (I) and (III): (I) the polymer crystalline materials a crystallinity of 70% or greater; (II) the crystals are 300 nm or less in size; and (III) the crystals have a number density of 40 ?m?3 or greater. This allows an embodiment of the present invention to provide polymer crystalline materials which are excellent in properties such as mechanical strength, heat tolerance, and transparency or, in particular, polymer crystalline materials, based on a general-purpose plastic such as PP, which is excellent in properties such as mechanical strength, heat tolerance, and transparency.
    Type: Application
    Filed: February 27, 2008
    Publication date: March 11, 2010
    Inventors: Masamichi Hikosaka, Kaori Watanabe, Kiyoka Okada
  • Publication number: 20090249883
    Abstract: A method and means for determining a critical elongation strain rate of a polymer melt, which make it possible to subject a polymer melt to elongation to prepare a bulk oriented melt, are established, and a process for producing bulk polymer oriented crystals and polymer oriented crystals are provided. In the critical elongation strain rate determination process or critical elongation strain rate determining method, a polymer melt (3) in a disc shape having a radius x0 and a thickness of ?z0 is held between transparent plates (an upper transparent plate (1) and a lower transparent plate (2)). The polymer melt (3) is cooled to a supercooled state and is press in a thickness direction at a constant rate v by using the transparent plates.
    Type: Application
    Filed: August 31, 2006
    Publication date: October 8, 2009
    Applicant: NATIONAL UNIVERSITY OF CORP. HIROSHIMA UNIVERSITY
    Inventors: Masamichi Hikosaka, Kaori Watanabe