Patents by Inventor Masanobu Asakawa

Masanobu Asakawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6915782
    Abstract: A control apparatus for a hybrid vehicle which comprises an internal-combustion engine and a motor as a power source, and connects at least one of the internal-combustion engine and the motor to driving wheels of the vehicle through a transmission so as to transmit a driving force to the driving wheels, comprises: a target torque setting device which sets a target torque with respect to a crank end torque, which is a torque at the end of a crank shaft, of the power plant torque output from the power plant being the internal combustion engine and the motor, based on a change of accelerator pedal opening from fully opened to fully closed; and a torque allocation device which allocates the target torque corresponding to the accelerator pedal opening, to an engine torque instruction, being a required value with respect to the output torque from the internal combustion engine, and to a motor torque instruction, being a required value with respect to the output torque from the motor.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: July 12, 2005
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kohei Hanada, Manabu Niki, Masanobu Asakawa, Minoru Suzuki, Teruo Wakashiro, Tomohiro Nishi, Takahiro Yonekura
  • Patent number: 6892128
    Abstract: An FI/AT/MGECU in a control unit calculates an EV travel capable battery terminal discharge power which is the dischargeable power from a battery during EV travel which is travel under the driving force from the motor, according to a state of charge of the battery and a vehicle travelling speed. Based on the calculated EV travel capable battery terminal discharge power and a predetermined limit value, an energy management charge-discharge required battery terminal power is calculated. Then an energy management charge-discharge required torque corresponding to the energy management charge-discharge required battery terminal power, that is the motor torque capable of being output, is calculated based on; a predetermined PDU-MOT overall efficiency efima which is the conversion efficiency of the electric power and the motive power between the power drive unit and the motor, a rotation frequency of the motor, and a predetermined torque limit value for protecting the motor.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: May 10, 2005
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masanobu Asakawa, Manabu Niki, Kohei Hanada, Minoru Suzuki, Teruo Wakashiro
  • Publication number: 20050038576
    Abstract: In a control apparatus for a hybrid vehicle which is able to travel under the driving force from at least one of an internal-combustion engine E and a drive motor connected to the internal-combustion engine, when an FI/AT/MGECU and a MOTECU execute motor damping which generates a torque for suppressing the torque vibration of the internal-combustion engine, in the motor M, the MOTECU corrects a motor torque calculating battery terminal current value obtained by multiplying an input-output current ABAT of the battery, by an offset value corresponding to the motor damping, and executes zero power control based on the corrected motor torque calculating battery current value. As a result, the input and output power of the power storage unit are accurately balanced and overcharge or overdischarge of the battery based on the input-output current ABAT of the battery including errors due to the damping control or the motor torque calculating battery current value, is avoided.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 17, 2005
    Inventors: Kazuhiro Hara, Masanobu Asakawa
  • Publication number: 20050003927
    Abstract: An FI/AT/MGECU in a control unit calculates an EV travel capable battery terminal discharge power which is the dischargeable power from a battery during EV travel which is travel under the driving force from the motor, according to a state of charge of the battery and a vehicle travelling speed. Based on the calculated EV travel capable battery terminal discharge power and a predetermined limit value, an energy management charge-discharge required battery terminal power is calculated. Then an energy management charge-discharge required torque corresponding to the energy management charge-discharge required battery terminal power, that is the motor torque capable of being output, is calculated based on; a predetermined PDU-MOT overall efficiency efima which is the conversion efficiency of the electric power and the motive power between the power drive unit and the motor, a rotation frequency of the motor, and a predetermined torque limit value for protecting the motor.
    Type: Application
    Filed: July 1, 2004
    Publication date: January 6, 2005
    Inventors: Masanobu Asakawa, Manabu Niki, Kohei Hanada, Minoru Suzuki, Teruo Wakashiro
  • Publication number: 20050003926
    Abstract: A control apparatus for a hybrid vehicle which comprises an internal-combustion engine and a motor as a power source, and connects at least one of the internal-combustion engine and the motor to driving wheels of the vehicle through a transmission so as to transmit a driving force to the driving wheels, comprises: a target torque setting device which sets a target torque with respect to a crank end torque, which is a torque at the end of a crank shaft, of the power plant torque output from the power plant being the internal combustion engine and the motor, based on a change of accelerator pedal opening from fully opened to fully closed; and a torque allocation device which allocates the target torque corresponding to the accelerator pedal opening, to an engine torque instruction, being a required value with respect to the output torque from the internal combustion engine, and to a motor torque instruction, being a required value with respect to the output torque from the motor.
    Type: Application
    Filed: June 23, 2004
    Publication date: January 6, 2005
    Inventors: Kohei Hanada, Manabu Niki, Masanobu Asakawa, Minoru Suzuki, Teruo Wakashiro, Tomohiro Nishi, Takahiro Yonekura
  • Publication number: 20050000481
    Abstract: An object is to improve fuel consumption efficiency. Accordingly, a fuel gradual addition delay time when starting (engine water temperature) TMKSTDLYT which changes in a decreasing trend with an increase in the engine water temperature is set (step S10). A fuel gradual addition delay time when starting (state of charge) TMKSTDLYQ which changes in an increasing trend with an increase in the state of charge QBAT is set (step S12 and S14). A fuel gradual addition delay time when starting (vehicle speed) TMKSTDLYV which changes in a decreasing trend with an increase in vehicle speed VP is set (step S13 and S15). Then the greatest value of; the fuel gradual addition delay time when starting (engine water temperature) TMKSTDLYT, the fuel gradual addition delay time when starting (state of charge) TMKSTDLYQ, and the fuel gradual addition delay time when starting (vehicle speed) TMKSTDLYV is set as a fuel gradual addition delay time when starting TMKSTDLY (step S16).
    Type: Application
    Filed: July 1, 2004
    Publication date: January 6, 2005
    Inventors: Masanobu Asakawa, Manabu Niki, Kohei Hanada, Minoru Suzuki, Teruo Wakashiro
  • Publication number: 20050003928
    Abstract: t An object is to improve fuel consumption efficiency while maintaining a desired driving force. Accordingly, in a case where an assisting possibility of a motor M is increased accompanying a relatively high state of charge SOC of a battery (YES side in step S02), and moreover in a case where a required torque TQAPCC is less than a predetermined value (NO side in step S03 or YES side in step S04), a “1” is set to a flag value of an LC_ON assistance flag F_LCOAST, and in a region for an accelerator pedal opening AP, and a vehicle speed VP, a region which maintains an LC_ON state where a lock-up clutch 21 is in an engaged state is enlarged compared to for a normal state where the flag value of the LC_ON assistance flag F_LCOAST is “0”. In the LC_ON region enlarging state, it is determined whether or not it is possible to shift to the normal state, according to the state of charge SOC and the required torque TQAPCC (step S07 to step S09).
    Type: Application
    Filed: June 30, 2004
    Publication date: January 6, 2005
    Inventors: Manabu Niki, Masanobu Asakawa, Kohei Hanada, Minoru Suzuki, Toshitaka Hachiro, Kazuhiko Kitano
  • Publication number: 20050000479
    Abstract: An FI/AT/MGECU, in a cylinders deactivation operating state during cruise control where the vehicle speed follows a predetermined target speed, regulates renewal on an addition side of a power plant required torque final value TQPPRQF, and in a case where a flag value of a torque hold flag F_CCKTQS showing to hold the power plant required torque final value TQPPRQF to a predetermined torque value related to a cylinder deactivation upper limit torque TQACS is a “1” (YES side in step S33), when the vehicle speed VP is decreased less than a value obtained by subtracting from a set vehicle speed VC which it the target vehicle speed during cruise control, a predetermined vehicle speed #?V (for example, #?V=3 km/h or the like) (YES side in step S35), the internal-combustion engine E is switched from a cylinders deactivation operation to an all cylinders operation. The fuel consumption efficiency is thus improved while keeping occupants in the vehicle from feeling discomfort with respect to travelling behavior.
    Type: Application
    Filed: July 2, 2004
    Publication date: January 6, 2005
    Inventors: Manabu Niki, Masanobu Asakawa, Kohei Hanada, Minoru Suzuki, Teruo Wakashiro, Takahiro Yonekura, Naoto Sen
  • Publication number: 20050003925
    Abstract: A motor charge-discharge torque limit correction coefficient for during cylinder deactivation enlargement assistance, which changes with an increasing trend according to an increase in a regeneration/assistance integrated residual amount which is an integrated value of the energy amount obtained during deceleration regeneration of vehicle, that is a correction coefficient which corrects to decrease an energy management discharge torque limit which is an upper limit value of motor torque set according to for example, an energy state in high voltage electrical equipment and an operating state of the vehicle, when assisting the output from the internal-combustion engine by the motor, is calculated. A value obtained by correcting the energy management discharge torque limit is set to an energy management discharge torque limit for cylinder deactivation enlargement assistance, and a cylinder deactivation upper limit ENG torque is added so as to calculate a cylinder deactivation upper limit torque.
    Type: Application
    Filed: July 1, 2004
    Publication date: January 6, 2005
    Inventors: Teruo Wakashiro, Masanobu Asakawa, Kohei Hanada, Manabu Niki, Toshitaka Hachiro, Tomohiro Nishi
  • Publication number: 20030029654
    Abstract: In a power supply apparatus for a vehicle, an inverter circuit inputs a voltage from a first battery unit through switches. A smoothing condenser is provided between the first battery unit and the inverter circuit in parallel. A DC-DC converter is provided between the smoothing condenser and a second battery unit to voltage-convert electric energy stored in the first battery unit or the smoothing condenser to supply to the second battery unit, and to voltage-convert electric energy stored in the second battery unit to supply to the smoothing condenser. An electronic control unit controls the DC-DC converter before starting power supply to the inverter circuit, such that the switches are closed after the smoothing condenser is charged to a voltage within a predetermined permission voltage range from the voltage of the first battery unit.
    Type: Application
    Filed: August 9, 2002
    Publication date: February 13, 2003
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Iwao Shimane, Mitsuteru Yano, Kazuhiro Hara, Masanobu Asakawa, Noriyuki Abe