Patents by Inventor Masanobu KOUTOKU

Masanobu KOUTOKU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11181054
    Abstract: An intake-air temperature controlling device for an engine is provided, which includes an engine body, an intake passage, an air intake part, an intake air temperature adjuster configured to adjust air temperature taken in through the air intake part to the passage, and a controller. An operating range in which the CI combustion is performed has a lean operating range in which A/F of mixture gas formed inside the cylinder, or G/F that is a relationship between the total weight G of gas inside the cylinder and a weight F of fuel fed to the cylinder is relatively low, and a rich operating range in which the A/F or G/F is relatively high. When the engine is in the lean operating range, the controller outputs a control signal to the intake air temperature adjuster so that the air temperature is increased, as compared in the rich operating range.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: November 23, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Kenji Sugasaki, Shin Kodama, Hiromasa Nakagawa, Tomokuni Kusunoki, Taiga Kamiji, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami
  • Patent number: 11111865
    Abstract: A compression ignition engine with a supercharger is provided, which includes one or more valves configured to switch a state between a first state where intake air is boosted by the supercharger and a second state where it is not boosted, a fluid temperature adjuster configured to adjust a temperature of engine coolant to be supplied to a radiator from an engine body, and a controller. When the engine operates in a high-load range, the controller controls the combustion mode to be in a compression ignition combustion mode, and causes the valve(s) to be in the first state, and in a low-load range, the controller causes the valve(s) to be in the second state. In the high-load range, the controller outputs a control signal to the fluid temperature adjuster so that a target temperature of the engine coolant is lowered than that in the low-load range.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 7, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Tomokuni Kusunoki, Tatsuya Takahata, Shinji Watanabe, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami, Nobuhiko Yokoyama
  • Patent number: 10876465
    Abstract: An intake-air temperature controlling device is provided, which includes an engine body, an intake passage, a supercharger, a first passage, a second passage, an intake air flow rate adjuster, an intercooler, a pump, and a controller. The controller outputs a control signal to the pump so that coolant is supplied to the intercooler in a first operating range in which the intake air flow rate adjuster at least partially opens the first passage to supply intake air boosted by the supercharger to the engine body, and outputs a control signal to the pump so that the coolant is supplied to the intercooler also in a second operating range in which an engine load is below a given load, and the intake air flow rate adjuster opens the second passage and closes the first passage to supply the intake air to the engine body in a non-boosted state.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: December 29, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Tomokuni Kusunoki, Shinji Takayama, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami
  • Publication number: 20200208582
    Abstract: A compression ignition engine with a supercharger is provided, which includes one or more valves configured to switch a state between a first state where intake air is boosted by the supercharger and a second state where it is not boosted, a fluid temperature adjuster configured to adjust a temperature of engine coolant to be supplied to a radiator from an engine body, and a controller. When the engine operates in a high-load range, the controller controls the combustion mode to be in a compression ignition combustion mode, and causes the valve(s) to be in the first state, and in a low-load range, the controller causes the valve(s) to be in the second state. In the high-load range, the controller outputs a control signal to the fluid temperature adjuster so that a target temperature of the engine coolant is lowered than that in the low-load range.
    Type: Application
    Filed: November 6, 2019
    Publication date: July 2, 2020
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Tomokuni Kusunoki, Tatsuya Takahata, Shinji Watanabe, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami, Nobuhiko Yokoyama
  • Publication number: 20200208567
    Abstract: An intake-air temperature controlling device is provided, which includes an engine body, an intake passage, a supercharger, a first passage, a second passage, an intake air flow rate adjuster, an intercooler, a pump, and a controller. The controller outputs a control signal to the pump so that coolant is supplied to the intercooler in a first operating range in which the intake air flow rate adjuster at least partially opens the first passage to supply intake air boosted by the supercharger to the engine body, and outputs a control signal to the pump so that the coolant is supplied to the intercooler also in a second operating range in which an engine load is below a given load, and the intake air flow rate adjuster opens the second passage and closes the first passage to supply the intake air to the engine body in a non-boosted state.
    Type: Application
    Filed: November 7, 2019
    Publication date: July 2, 2020
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Tomokuni Kusunoki, Shinji Takayama, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami
  • Publication number: 20200208579
    Abstract: An intake-air temperature controlling device for an engine is provided, which includes an engine body, an intake passage, an air intake part, an intake air temperature adjuster configured to adjust air temperature taken in through the air intake part to the passage, and a controller. An operating range in which the CI combustion is performed has a lean operating range in which A/F of mixture gas formed inside the cylinder, or G/F that is a relationship between the total weight G of gas inside the cylinder and a weight F of fuel fed to the cylinder is relatively low, and a rich operating range in which the A/F or G/F is relatively high. When the engine is in the lean operating range, the controller outputs a control signal to the intake air temperature adjuster so that the air temperature is increased, as compared in the rich operating range.
    Type: Application
    Filed: November 5, 2019
    Publication date: July 2, 2020
    Inventors: Shinichi Hikitani, Hajime Umehara, Naoki Nagano, Kenji Sugasaki, Shin Kodama, Hiromasa Nakagawa, Tomokuni Kusunoki, Taiga Kamiji, Masanobu Koutoku, Toshinori Ueno, Katsuya Murakami
  • Patent number: 10669918
    Abstract: A heat insulating structure of an internal combustion engine (engine 1) includes a cylinder-head-side heat insulating cover (30) and a cylinder-block-side heat insulating cover (40). Each of the first side walls (32) of the cylinder-head-side heat insulating cover (30) is disposed outwardly of, and is spaced apart from, a corresponding one of the second side walls (43) of the cylinder-block-side heat insulating cover (40) in the width direction of the vehicle. The lower edge of each of the first side walls (32) is positioned below the upper edge of the corresponding one of the second side walls (43) to overlap with the corresponding one of the second side walls (43) when viewed from the side of the vehicle.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: June 2, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Tsukasa Hoshino, Kenji Sugasaki, Kazumi Okamura, Makoto Shinhama, Masanobu Koutoku, Ryo Yamamoto, Yukiya Tanaka, Toshimichi Nishikawa
  • Patent number: 10611235
    Abstract: A grille shutter control device of a vehicle includes an encapsulation structure covering an engine, a grille shutter provided at an opening formed at a front wall portion of the encapsulation structure, an actuator configured to move the grille shutter to open/close the opening, and a controller configured to control the actuator. The controller determines whether or not heat damage occurs on a related component relating to the engine upon key OFF, closes the grille shutter upon key OFF in the case of determining that the heat damage will not occur, and opens the grille shutter upon key OFF in the case of determining that the heat damage will occur.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 7, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Hironobu Sakashita, Kentaro Ota, Masahiro Nagoshi, Keisuke Tanaka, Shinichi Hikitani, Junki Yoshizako, Masanobu Koutoku, Toshinori Ueno
  • Publication number: 20190126741
    Abstract: A grille shutter control device of a vehicle includes an encapsulation structure covering an engine, a grille shutter provided at an opening formed at a front wall portion of the encapsulation structure, an actuator configured to move the grille shutter to open/close the opening, and a controller configured to control the actuator. The controller determines whether or not heat damage occurs on a related component relating to the engine upon key OFF, closes the grille shutter upon key OFF in the case of determining that the heat damage will not occur, and opens the grille shutter upon key OFF in the case of determining that the heat damage will occur.
    Type: Application
    Filed: October 9, 2018
    Publication date: May 2, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Hironobu SAKASHITA, Kentaro OTA, Masahiro NAGOSHI, Keisuke TANAKA, Shinichi HIKITANI, Junki YOSHIZAKO, Masanobu KOUTOKU, Toshinori UENO
  • Patent number: 10266128
    Abstract: A heat insulating cover (cylinder-head-side heat insulating cover (30)) includes a top wall (31) and first side walls (32). The top wall (31) covers a top surface of an engine (1) that is a surface of an upper portion of the engine (1). The first side walls (32) cover respective upper portions of both side surfaces of the engine (1) in a vehicle width direction. A portion of the heat insulating cover closer to the rear of the vehicle is provided with a hinge mechanism (36) vertically rotatably supporting the upper portion of the heat insulating cover including the top wall (31). The upper portion of the heat insulating cover can be rotated, with the hinge mechanism (36) as a fulcrum, between a closed position where the engine (1) is shielded and an open position where the engine (1) is visible.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: April 23, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Tsukasa Hoshino, Kenji Sugasaki, Kazumi Okamura, Makoto Shinhama, Masanobu Koutoku, Ryo Yamamoto, Yukiya Tanaka, Toshimichi Nishikawa
  • Publication number: 20190048779
    Abstract: A heat insulating structure of an internal combustion engine (engine 1) includes a cylinder-head-side heat insulating cover (30) and a cylinder-block-side heat insulating cover (40). Each of the first side walls (32) of the cylinder-head-side heat insulating cover (30) is disposed outwardly of, and is spaced apart from, a corresponding one of the second side walls (43) of the cylinder-block-side heat insulating cover (40) in the width direction of the vehicle. The lower edge of each of the first side walls (32) is positioned below the upper edge of the corresponding one of the second side walls (43) to overlap with the corresponding one of the second side walls (43) when viewed from the side of the vehicle.
    Type: Application
    Filed: March 6, 2017
    Publication date: February 14, 2019
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Tsukasa HOSHINO, Kenji SUGASAKI, Kazumi OKAMURA, Makoto SHINHAMA, Masanobu KOUTOKU, Ryo YAMAMOTO, Yukiya TANAKA, Toshimichi NISHIKAWA
  • Publication number: 20180244216
    Abstract: A heat insulating cover (cylinder-head-side heat insulating cover (30)) includes a top wall (31) and first side walls (32). The top wall (31) covers a top surface of an engine (1) that is a surface of an upper portion of the engine (1). The first side walls (32) cover respective upper portions of both side surfaces of the engine (1) in a vehicle width direction. A portion of the heat insulating cover closer to the rear of the vehicle is provided with a hinge mechanism (36) vertically rotatably supporting the upper portion of the heat insulating cover including the top wall (31). The upper portion of the heat insulating cover can be rotated, with the hinge mechanism (36) as a fulcrum, between a closed position where the engine (1) is shielded and an open position where the engine (1) is visible.
    Type: Application
    Filed: March 8, 2017
    Publication date: August 30, 2018
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Tsukasa HOSHINO, Kenji SUGASAKI, Kazumi OKAMURA, Makoto SHINHAMA, Masanobu KOUTOKU, Ryo YAMAMOTO, Yukiya TANAKA, Toshimichi NISHIKAWA