Patents by Inventor Masanori Arata

Masanori Arata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7312552
    Abstract: Sub core sections are arranged at the end portions and the center portion of a stator core, and strand conductors are twisted and transposed by 360 degrees continuously toward the extending direction of winding slot. The length corresponding to transposition pitch 180 degrees of the strand conductors of the stator core is set as one core unit area, the sub core sections including portions whose space factors are different are arranged such that the sum of voltages in the strands induced in the strand conductors in the odd-numbered core unit area from one end portion of the stator core offsets the sum of voltages in the strands induced in the strand conductors in the even-numbered core unit area from the end portion of the core.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: December 25, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masafumi Fujita, Tadashi Tokumasu, Yasuo Kabata, Masanori Arata, Mikio Kakiuchi, Susumu Nagano
  • Publication number: 20070052313
    Abstract: Included are a ring-shaped stator and a ring-shaped rotor arranged inside the stator; the stator includes a stator core with armature windings; the rotor includes a rotor core in which a plurality of permanent magnets are inserted and cooling holes are formed, a coolant flowing in each of the cooling holes; and each of the cooling holes is formed so as to have a sectional view which is a convex toward the outer periphery thereof.
    Type: Application
    Filed: July 27, 2006
    Publication date: March 8, 2007
    Inventors: Norio Takahashi, Kazuto Sakai, Yoshio Hashidate, Masanori Arata, Wataru Ito, Masakatsu Matsubara, Takashi Hanai, Yasuo Hirano
  • Patent number: 7170209
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions. The rotor core has two keys which are formed at two positions on an inner circumference of the rotor core. The positions are spaced 180 degrees apart from each other with respect to the rotor core. The rotor core is divided into a plurality of blocks and the core materials constituting at least one block have the magnetic concave and convex portions shifted by a predetermined angle relative to the core materials constituting the other or another block on the basis of a center line passing through the keys. A whole or part of the core materials of at least one block are located circumferentially 180 degrees apart form the core materials constituting the other or another block.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 30, 2007
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai
  • Patent number: 7057322
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference, the rotor core being divided into a plurality of blocks, the core materials constituting one of at least three blocks having the magnetic concave and convex portions shifted by a predetermined angle in one of a rotating direction of the rotor and a direction opposite the rotating direction of the rotor relative to a center line passing the key, the core materials constituting each one of the blocks located at both ends of the one block having the magnetic concave and convex portions shifted by a predetermined angle in the other of the rotating direction of the rotor and the direction opposite the rotating direction of the rotor relative to a center line passing the key, and a ro
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 6, 2006
    Assignees: Kabushiki Kaisha Toshiba, Aishin AW Co., Ltd., Toshiba Industrial Products Manufacturing Corporation
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondo, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai, Ken Takeda, Hiroshi Morohashi
  • Publication number: 20060071573
    Abstract: Sub core sections are arranged at the end portions and the center portion of a stator core, and strand conductors are twisted and transposed by 360 degrees continuously toward the extending direction of winding slot. The length corresponding to transposition pitch 180 degrees of the strand conductors of the stator core is set as one core unit area, the sub core sections including portions whose space factors are different are arranged such that the sum of voltages in the strands induced in the strand conductors in the odd-numbered core unit area from one end portion of the stator core offsets the sum of voltages in the strands induced in the strand conductors in the even-numbered core unit area from the end portion of the core.
    Type: Application
    Filed: October 3, 2005
    Publication date: April 6, 2006
    Inventors: Masafumi Fujita, Tadashi Tokumasu, Yasuo Kabata, Masanori Arata, Mikio Kakiuchi, Susumu Nagano
  • Publication number: 20050104468
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference, the rotor core being divided into a plurality of blocks, the core materials constituting one of at least three blocks having the magnetic concave and convex portions shifted by a predetermined angle in one of a rotating direction of the rotor and a direction opposite the rotating direction of the rotor relative to a center line passing the key, the core materials constituting each one of the blocks located at both ends of the one block having the magnetic concave and convex portions shifted by a predetermined angle in the other of the rotating direction of the rotor and the direction opposite the rotating direction of the rotor relative to a center line passing the key, and a ro
    Type: Application
    Filed: July 23, 2004
    Publication date: May 19, 2005
    Applicants: KABUSHIKI KAISHA TOSHIBA, AISIN AW CO., LTD., TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORP.
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai, Ken Takeda, Hiroshi Morohashi
  • Publication number: 20050023922
    Abstract: A rotor for a reluctance type rotating machine includes a rotor core formed by stacking a number of annular core materials each of which includes magnetic concave and convex portions alternately formed on an outer circumference thereof and a central through hole, the rotor core having a key axially extending on an outer circumference thereof, the rotor core being divided into a plurality of blocks, the core materials constituting at least one block having the magnetic concave and convex portions shifted by a predetermined angle relative to the core materials constituting the other or another block on the basis of a center line passing the key, and a rotational shaft inserted through the central hole of the rotor core, the shaft having a key groove engaging the key of the rotor core.
    Type: Application
    Filed: April 28, 2004
    Publication date: February 3, 2005
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA INDUSTRIAL PRODUCTS MANUFACTURING CORP.
    Inventors: Takashi Araki, Masakatsu Matsubara, Motoyasu Mochizuki, Yukihiko Kazao, Masanori Arata, Yasuo Hirano, Nobutake Aikura, Akito Kondou, Masahiko Yamashiki, Masanori Ohashi, Takashi Hanai
  • Patent number: 6803692
    Abstract: The permanent magnet type reluctance electric motor includes a stator including a stator iron core and having armature coils placed inside slots, and a rotor provided with a plurality of magnetic barriers formed by cavities and placed on an inner side of the stator such that sections where a magnetic flux can easily pass (d-axis) and sections where a magnetic flux cannot easily pass (q-axis) are alternately formed, and made of a rotor iron core having permanent magnets in cavities. The rotor satisfies a relationship of PL/2&pgr;RWqave≧130, where Wqave [m] indicates an average thickness of the rotor iron core on an outer side in a radial direction of the rotor with respect to cavities arranged in a q-axis direction, L [m]; a width in a circumferential direction of the cavities, P; the number of poles and R [m]; the radius of the rotor.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: October 12, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoyuki Hattori, Kazuto Sakai, Masanori Arata
  • Patent number: 6794784
    Abstract: Permanent magnets are arranged to be supported by the provision of permanent magnet position-locating projections (12) in permanent magnet embedding holes (5). By optimizing the shape of thin-wall regions (18) and (19) within rotor core (4), leakage of flux generated from the permanent magnets is reduced and the strength of the thin-wall regions where stress is concentrated is ensured.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 21, 2004
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Industrial Products Manufacturing Corporation
    Inventors: Norio Takahashi, Yutaka Hashiba, Kazuto Sakai, Masanori Arata, Yukihiko Kazao, Takashi Araki, Masakatsu Matsubara, Yasuo Hirano
  • Patent number: 6552462
    Abstract: A reluctance type rotating machine includes a stator 1 having armature windings 2 arranged on an inner periphery of the stator 1, a rotor 3 having a magnetic unevenness in the circumferential direction and a plurality of permanent magnets 6 arranged for negating the armature windings' flux passing between adjoining poles. Each magnet 6 is magnetized in a direction different from a direction to facilitate the rotor's magnetization. A magnetic portion 7 is provided between the pole and the interpole of the rotor 3. Owing to the provision of the magnetic portion 7, when the armature windings are not excited, more than 30% of the permanent magnets' flux is distributed in the rotor 3. Similarly, when the machine is loaded, the permanent magnets' interlinkage flux is more than 10% of composite interlinkage flux composed of armature current and the permanent magnets.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: April 22, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Sakai, Masanori Arata, Mikio Takabatake, Yoshio Hashidate, Ryoichi Kurosawa, Yosuke Nakazawa, Tadashi Tokumasu
  • Publication number: 20020109429
    Abstract: The permanent magnet type reluctance electric motor includes a stator including a stator iron core and having armature coils placed inside slots, and a rotor provided with a plurality of magnetic barriers formed by cavities and placed on an inner side of the stator such that sections where a magnetic flux can easily pass (d-axis) and sections where a magnetic flux cannot easily pass (q-axis) are alternately formed, and made of a rotor iron core having permanent magnets in cavities. The rotor satisfies a relationship of PL/2&pgr;RWqave≧130, where Wqave [m] indicates an average thickness of the rotor iron core on an outer side in a radial direction of the rotor with respect to cavities arranged in a q-axis direction, L [m]; a width in a circumferential direction of the cavities, P; the number of poles and R [m]; the radius of the rotor.
    Type: Application
    Filed: January 24, 2002
    Publication date: August 15, 2002
    Inventors: Tomoyuki Hattori, Kazuto Sakai, Masanori Arata
  • Publication number: 20020047436
    Abstract: A reluctance type rotating machine includes a stator 1 having armature windings 2 arranged on an inner periphery of the stator 1, a rotor 3 having a magnetic unevenness in the circumferential direction and a plurality of permanent magnets 6 arranged for negating the armature windings' flux passing between adjoining poles. Each magnet 6 is magnetized in a direction different from a direction to facilitate the rotor's magnetization. A magnetic portion 7 is provided between the pole and the interpole of the rotor 3. Owing to the provision of the magnetic portion 7, when the armature windings are not excited, more than 30% of the permanent magnets' flux is distributed in the rotor 3. Similarly, when the machine is loaded, the permanent magnets' interlinkage flux is more than 10% of composite interlinkage flux composed of armature current and the permanent magnets.
    Type: Application
    Filed: June 4, 2001
    Publication date: April 25, 2002
    Inventors: Kazuto Sakai, Masanori Arata, Mikio Takabatake, Yoshio Hashidate, Ryoichi Kurosawa, Yosuke Nakazawa, Tadashi Tokumasu
  • Publication number: 20020047435
    Abstract: Permanent magnets are arranged to be supported by the provision of permanent magnet position-locating projections (12) in permanent magnet embedding holes (5). By optimizing the shape of thin-wall regions (18) and (19) within rotor core (4), leakage of flux generated from the permanent magnets is reduced and the strength of the thin-wall regions where stress is concentrated is ensured.
    Type: Application
    Filed: May 24, 2001
    Publication date: April 25, 2002
    Inventors: Norio Takahashi, Yutaka Hashiba, Kazuto Sakai, Masanori Arata, Yukihiko Kazao, Takashi Araki, Masakatsu Matsubara, Yasuo Hirano
  • Patent number: 6342745
    Abstract: A reluctance type rotating machine includes a stator 1 having armature windings 2 arranged on an inner periphery of the stator 1, a rotor 3 having a magnetic unevenness in the circumferential direction and a plurality of permanent magnets 6 arranged for negating the armature windings' flux passing between adjoining poles. Each magnet 6 is magnetized in a direction different from a direction to facilitate the rotor's magnetization. A magnetic portion 7 is provided between the pole and the interpole of the rotor 3. Owing to the provision of the magnetic portion 7, when the armature windings are not excited, more than 30% of the permanent magnets' flux is distributed in the rotor 3 Similarly, when the machine is loaded, the permanent magnets' interlinkage flux is more than 10% of composite interlinkage flux composed of armature current and the permanent magnets.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: January 29, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Sakai, Masanori Arata, Mikio Takabatake, Yoshio Hashidate, Ryoichi Kurosawa, Yosuke Nakazawa, Tadashi Tokumasu
  • Patent number: 6329734
    Abstract: A permanent magnet-reluctance type rotating machine includes an annular stator having armature windings arranged on an inner periphery of the stator, a rotor rotatably arranged inside the stator and a plurality of permanent magnets disposed in a rotor core. One permanent magnet defining each pole is divided into two magnet pieces in a direction parallel to the magnetizing direction of the permanent magnets. Owing to the division of the magnet, the mass of each permanent magnet becomes small in comparison with that of the conventional machine, so that the centrifugal force applied on the magnet holes can be reduced. Consequently, the stress generating in the rotor core is decreased to allow the rotating machine to rotate at a higher speed.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: December 11, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Norio Takahashi, Kazuto Sakai, Yutaka Hashiba, Masanori Arata, Hirotsugu Tsutsui
  • Patent number: 6274960
    Abstract: A reluctance type rotating machine includes a stator 1 having armature windings 2 arranged on an inner periphery of the stator 1, a rotor 3 having a magnetic unevenness in the circumferential direction and a plurality of permanent magnets 6 arranged for negating the armature windings' flux passing between adjoining poles. Each magnet 6 is magnetized in a direction different from a direction to facilitate the rotor's magnetization. A magnetic portion 7 is provided between the pole and the interpole of the rotor 3. Owing to the provision of the magnetic portion 7, when the armature windings are not excited, more than 30% of the permanent magnets' flux is distributed in the rotor 3. Similarly, when the machine is loaded, the permanent magnets' interlinkage flux is more than 10% of composite interlinkage flux composed of armature current and the permanent magnets.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: August 14, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuto Sakai, Masanori Arata, Mikio Takabatake, Yoshio Hashidate, Ryoichi Kurosawa, Yosuke Nakazawa, Tadashi Tokumasu
  • Patent number: 6268677
    Abstract: A rotor is provided for a permanent magnet type rotating machine having a stator 1 with armature windings 11. The rotor 3 includes a rotor core 31 and a plurality of permanent magnets 32 arranged in the rotor core 31 so as to negate magnetic flux of the armature windings 11 passing through interpoles 3b. The rotor 3 is constructed so that the average of magnetic flux in an air gap 2 between the rotor 3 and the stator 1, which is produced by the permanent magnets 32 at the armature windings' de-energized, ranges from 0.1 [T] to 0.7 [T] and the ratio (Lq/Ld) of self-inductance of the magnetic portion in a hard-magnetizing direction (q-axis) to self-inductance in an easy-magnetizing direction (d-axis) under a rated load condition ranges from 0.1 to 0.8. Under these conditions, it is possible to realize the rotating machine which operates as an induction machine at the machine's starting and also operates as an synchronous machine at the rated driving due to smooth pull-in.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: July 31, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mikio Takabatake, Masanori Arata, Kazuto Sakai, Yutaka Hashiba, Yoshio Hashidate, Norio Takahashi, Koji Oishi, Shiro Amemori
  • Patent number: 6060971
    Abstract: The present invention provides a superconducting magnet device for a crystal pulling device comprising a pair of ring-like superconducting coils facing with each other, with the crystal pulling device disposed therebetween, a radiation shield surrounding the superconducting coils, and a vessel surrounding the radiation shield, wherein the vessel on the side facing to the crystal pulling device is made from a nonmagnetic substance, and the vessel on the other side is made from a magnetic substance.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: May 9, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Sasaki, Masanori Arata
  • Patent number: 4740724
    Abstract: A superconducting generator rotor which has a superconducting field coil cooled by liquid helium. The evaporated gas helium is utilized to cool the electric lead which leads electricity to the field coil. The gas helium is then confined in a coolant flow passage made of electrical insulation material. With this rotor, electrical discharge is avoided even when high voltage appears through introduction of excitation control.
    Type: Grant
    Filed: June 18, 1987
    Date of Patent: April 26, 1988
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazuo Sato, Masanori Arata, Mikio Kumagai