Patents by Inventor Masanori Harata

Masanori Harata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967715
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, and having a composition represented by NaxSi136, wherein 1.98<x<2.54.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: April 23, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi Otaki, Jun Yoshida, Kazuhiro Suzuki, Masanori Harata
  • Publication number: 20240030422
    Abstract: The main object of the disclosure is to provide electrode active material Si particles that can inhibit fluctuation in constraining pressure of a battery during charge-discharge. The electrode active material Si particles have clathrate-type Si and diamond-type Si in the same particles. The electrode active material Si particles preferably comprise diamond-type Si at an area % of 0.05 to 11.00 with respect to the entire electrode active material Si particles. Preferably, the clathrate-type Si at least partially has a clathrate type II structure. The electrode active material Si particles preferably have a porous structure.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 25, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro MASHIMO, Mitsutoshi OTAKI, Jun YOSHIDA, Masanori HARATA, Yasuhiro YAMAGUCHI, Kota URABE, Tatsuya EGUCHI
  • Publication number: 20240030421
    Abstract: Negative electrode active material particles of the present disclosure are Si particles with pores inside primary particles and having a clathrate type crystalline phase, and satisfying the following relationship: 0.061?V/W. Here, V is a volume of pores having a pore diameter of 10 nm or less and W is a half width of a peak at 2?=31.72°±0.50° in an X-ray diffraction test using CuK?.
    Type: Application
    Filed: July 18, 2023
    Publication date: January 25, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naohiro MASHIMO, Mitsutoshi OTAKI, Jun YOSHIDA, Masanori HARATA, Yasuhiro YAMAGUCHI, Kota URABE, Tatsuya EGUCHI
  • Publication number: 20240021805
    Abstract: The present disclosure provides primarily a negative electrode active material with reduced volume change during charge-discharge. The negative electrode active material of the disclosure consists of clathrate-type Si particles comprising one or more metals selected from the group consisting of Mo, Fe, Zn, Mg, Pd, Zr, Ag, Co, Cr, Nb and V. A negative electrode active material layer according to the disclosure comprises the negative electrode active material of the disclosure, and a lithium-ion battery of the disclosure comprises the negative electrode active material layer of the disclosure.
    Type: Application
    Filed: July 12, 2023
    Publication date: January 18, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi OTAKI, Jun YOSHIDA, Shinji NAKANISHI, Hisatsugu YAMASAKI, Natsuki KIKUCHI, Yasuhiro YAMAGUCHI, Tatsuya EGUCHI, Masanori HARATA, Kota URABE
  • Publication number: 20240014388
    Abstract: A negative electrode body of the present disclosure is a negative electrode body for a lithium ion battery having a negative electrode current collector layer and a negative electrode active material layer, wherein the negative electrode active material layer contains Si particles having a clathrate type structure as a negative electrode active material, wherein the negative electrode active material layer contains 0.850 mass % to 5.000 mass % of Al with respect to a mass of the negative electrode active material layer, and wherein the Si particles contain 0.040 mass % to 0.250 mass % of Al with respect to a mass of the Si particles.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 11, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi Otaki, Jun Yoshida, Shinji Nakanishi, Yasuhiro Yamaguchi, Tatsuya Eguchi, Masanori Harata, Kota Urabe, Tomohiro Niimi, Kayoko Yukawa
  • Publication number: 20240014389
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, including a void inside a primary particle, and a void amount of the void with a fine pore diameter of 100 nm or less is 0.05 cc/g or more and 0.15 cc/g or less.
    Type: Application
    Filed: September 21, 2023
    Publication date: January 11, 2024
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi OTAKI, Jun YOSHIDA, Kazuhiro SUZUKI, Masanori HARATA
  • Patent number: 11799076
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, including a void inside a primary particle, and a void amount of the void with a fine pore diameter of 100 nm or less is 0.05 cc/g or more and 0.15 cc/g or less.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: October 24, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi Otaki, Jun Yoshida, Kazuhiro Suzuki, Masanori Harata
  • Patent number: 11721805
    Abstract: Provided is a negative electrode active material that contains silicon clathrate II and that is suitable for a negative electrode of a lithium ion secondary battery. The negative electrode active material includes a silicon material in which silicon clathrate II represented by composition formula NaxSi136 (0?x?10) is contained and a volume of a pore having a diameter of not greater than 100 nm is not less than 0.025 cm3/g.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: August 8, 2023
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Harata, Tatsuya Eguchi, Masakazu Murase, Jun Yoshida, Kazuhiro Suzuki, Daichi Kosaka, Shinji Nakanishi
  • Publication number: 20230090390
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, including a void inside a primary particle, and a void amount A of the void with a fine pore diameter of 100 nm or less is more than 0.15 cc/g and 0.40 cc/g or less.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 23, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi Otaki, Jun Yoshida, Masanori Harata, Yasuhiro Yamaguchi, Kota Urabe, Tatsuya Eguchi
  • Publication number: 20230086351
    Abstract: A method for manufacturing a negative electrode active material includes: an alloying step of causing an Na source and an Si source to react to produce an Na—Si alloy containing Na and Si; and a silicon clathrate production step of heating the Na—Si alloy and reducing an amount of Na in the Na—Si alloy to produce a type-II silicon clathrate. Porous Si with a BET specific surface area of 20 m2/g or more is used as the Si source.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 23, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Harata, Kazuhiro Niimura, Kota Urabe, Yasuhiro Yamaguchi, Tatsuya Eguchi, Mitsutoshi Otaki, Jun Yoshida
  • Patent number: 11600817
    Abstract: Provided is a novel production method for producing silicon clathrate II. In the production method for producing silicon clathrate II, in a reaction system in which a Na—Si alloy containing Na and Si and an Na getter agent coexist so as not to be in contact with each other, the Na—Si alloy is heated and Na evaporated from the Na—Si alloy is thus caused to react with the Na getter agent to reduce an amount of Na in the Na—Si alloy.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: March 7, 2023
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Harata, Jun Yoshida, Kazuhiro Suzuki, Daichi Kosaka, Shinji Nakanishi
  • Publication number: 20220149360
    Abstract: A main object of the present disclosure is to provide an active material wherein the volume variation of an electrode layer during charge/discharge may be suppressed. The present disclosure achieves the object by providing an active material used for an all solid state battery, the active material comprising at least Si, and in infrared spectrum, when a maximum peak intensity in 900 cm?1 or more and 950 cm?1 or less is regarded as I1, and a maximum peak intensity in 1000 cm?1 or more and 1100 cm?1 or less is regarded as I2, the I1 and the I2 satisfy 0.55?I2/I1?1.0, and 0.01?I1.
    Type: Application
    Filed: November 8, 2021
    Publication date: May 12, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi Otaki, Jun Yoshida, Tetsuya Waseda, Masanori Harata, Tatsuya Eguchi
  • Publication number: 20210391576
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, and having a composition represented by NaxSi136, wherein 1.98<x<2.54.
    Type: Application
    Filed: March 24, 2021
    Publication date: December 16, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi OTAKI, Jun YOSHIDA, Kazuhiro SUZUKI, Masanori HARATA
  • Publication number: 20210305556
    Abstract: A main object of the present disclosure is to provide an active material wherein a volume variation due to charge/discharge is small. The present disclosure achieves the object by providing an active material comprising a silicon clathrate II type crystal phase, including a void inside a primary particle, and a void amount of the void with a fine pore diameter of 100 nm or less is 0.05 cc/g or more and 0.15 cc/g or less.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 30, 2021
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Mitsutoshi OTAKI, Jun YOSHIDA, Kazuhiro SUZUKI, Masanori HARATA
  • Publication number: 20210066713
    Abstract: Provided is a negative electrode active material that contains silicon clathrate II and that is suitable for a negative electrode of a lithium ion secondary battery. The negative electrode active material includes a silicon material in which silicon clathrate II represented by composition formula NaxSi136 (0?x?10) is contained and a volume of a pore having a diameter of not greater than 100 nm is not less than 0.025 cm3/g.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori HARATA, Tatsuya EGUCHI, Masakazu MURASE, Jun YOSHIDA, Kazuhiro SUZUKI, Daichi KOSAKA, Shinji NAKANISHI
  • Publication number: 20210066714
    Abstract: Provided is a novel production method for producing silicon clathrate II. In the production method for producing silicon clathrate II, in a reaction system in which a Na—Si alloy containing Na and Si and an Na getter agent coexist so as not to be in contact with each other, the Na—Si alloy is heated and Na evaporated from the Na—Si alloy is thus caused to react with the Na getter agent to reduce an amount of Na in the Na—Si alloy.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Applicants: KABUSHIKI KAISHA TOYOTA JIDOSHOKI, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori HARATA, Jun YOSHIDA, Kazuhiro SUZUKI, Daichi KOSAKA, Shinji NAKANISHI
  • Patent number: 10800660
    Abstract: A method for producing a silicon material, the method including: a step of heating CaSi2 powder in a range of 400 to 1000° C.; a step of reacting acid with the CaSi2 powder having been subjected to the step of heating CaSi2 powder in a range of 400 to 1000° C., to obtain a layered silicon compound; and a step of heating the layered silicon compound at not less than 300° C.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: October 13, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Masanori Harata, Takashi Mohri, Nobuhiro Goda, Yasuhiro Yamaguchi
  • Patent number: 10553864
    Abstract: An active material expressed by a general formula; LiaNibCocMndDeOf (where 0.2?“a”?1, “b”+“c”+“d”+“e”=1, 0?“e”<1, “D” is at least one element selected from the group consisting of Li, Fe, Cr, Cu, Zn, Ca, Mg, Zr, S, Si, Na, K and Al, and 1.7?“f”?2.1) includes a high manganese portion, which is made of a metallic oxide including Ni, Co and Mn at least and of which the composition ratio between Ni, Co and Mn is expressed by Ni:Co:Mn=b2:c2:d2 (note that “b2”+“c2”+“d2”=1, 0<“b2”<1, 0<“c2”<“c”, and “d”<“d2”<1), in a superficial layer thereof.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: February 4, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tsukasa Sugie, Dai Matsushiro, Masanori Harata, Takefumi Fukumoto
  • Patent number: 10312513
    Abstract: A lithium composite metallic oxide expressed by: LiaNibCocMndDeOf (where 0.2?“a”?1.5, “b”+“c”+“d”+“e”=1, 0<“e”<1, “D” is at least one of the following elements: Fe, Cr, Cu, Zn, Ca, Mg, Zr, S, Si, Na, K, Al, Ti, P, Ga, Ge, V, Mo, Nb, W, La, Hf and Rf, and 1.7?“f”?2.1), and including: a high manganese portion, which is made of a metallic oxide including Ni, Co and Mn at least and of which the composition ratio between Ni, Co and Mn is expressed by Ni:Co:Mn=g:h:i (note that “g”+“h”+“i”=1, 0<“g”<1, 0<“h”<“c”, and “d”<“i”<1), in a superficial layer thereof; and a metallic oxidation portion in an outermost superficial layer of the high manganese portion.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: June 4, 2019
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tsukasa Sugie, Dai Matsushiro, Masanori Harata
  • Patent number: 10308515
    Abstract: Provided is a method for producing a CaSi2-containing composition, the method including: a molten metal step of adding Ca and/or M (M is at least one element selected from elements of groups 3 to 9) to a CaSi2-containing composition containing crystalline silicon to prepare a molten metal containing Ca, M and Si that satisfy the following condition: when a molar ratio of Ca, M and Si is x:y:z (x+y+z=100), x, y and z satisfy 23<x?100/3, 0<y<10 and 64<z?200/3, respectively; and a cooling step of cooling the molten metal to obtain a CaSi2-containing composition containing a reduced amount of crystalline silicon.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: June 4, 2019
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Masanori Harata, Nobuhiro Goda, Takashi Mohri, Hiroki Oshima