Patents by Inventor Masanori Iwaki

Masanori Iwaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9815707
    Abstract: The present invention provides a method of processing discharge gas containing ammonia, hydrogen, nitrogen, and an organic metal compound discharged from the production process of a gallium nitride compound semiconductor. The discharge gas is brought into contact with a cleaning agent prepared by impregnating an alkali metal compound with a metal oxide to remove the organic metal compound from the discharge gas. The discharge gas from which an organic metal compound is removed is brought into contact with an ammonia decomposition catalyst on heating to decompose the ammonia into nitrogen and hydrogen. The discharge gas in which ammonia is decomposed is brought into contact with palladium alloy membrane on heating to recover hydrogen that has penetrated through the palladium alloy membrane.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: November 14, 2017
    Assignee: JAPAN PIONICS CO., LTD.
    Inventors: Kansei Izaki, Masanori Iwaki, Yasusada Miyano, Toshio Akiyama
  • Publication number: 20160101987
    Abstract: The present invention provides a method of processing discharge gas containing ammonia, hydrogen, nitrogen, and an organic metal compound discharged from the production process of a gallium nitride compound semiconductor. The discharge gas is brought into contact with a cleaning agent prepared by impregnating an alkali metal compound with a metal oxide to remove the organic metal compound from the discharge gas. The discharge gas from which an organic metal compound is removed is brought into contact with an ammonia decomposition catalyst on heating to decompose the ammonia into nitrogen and hydrogen. The discharge gas in which ammonia is decomposed is brought into contact with palladium alloy membrane on heating to recover hydrogen that has penetrated through the palladium alloy membrane.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Kansei IZAKI, Masanori IWAKI, Yasusada MIYANO, Toshio AKIYAMA
  • Patent number: 8889090
    Abstract: There are provided methods capable of easily and efficiently recovering and recycling ammonia from exhaust gas containing a small amount of ammonia, the exhaust gas being exhausted from a production process of a gallium nitride compound semiconductor. The method of recovering ammonia includes filtering exhaust gas containing ammonia, hydrogen, nitrogen, and a solid compound with a filter to remove the solid compound from the exhaust gas; pressurizing and cooling the filtered exhaust gas with a heat pump to liquefy ammonia contained in the filtered exhaust gas; and separating liquefied ammonia from hydrogen and nitrogen to recover liquefied ammonia. The method of recycling ammonia includes evaporating recovered liquid ammonia; mixing the evaporated ammonia with another crude ammonia to obtain mixed gas; purifying the mixed gas; and supplying the purified gas to the production process of a gallium nitride compound semiconductor.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: November 18, 2014
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Kansei Izaki, Masanori Iwaki, Toshio Akiyama
  • Publication number: 20140322124
    Abstract: The present invention provides a method of processing discharge gas containing ammonia, hydrogen, nitrogen, and an organic metal compound discharged from the production process of a gallium nitride compound semiconductor. The discharge gas is brought into contact with a cleaning agent prepared by impregnating an alkali metal compound with a metal oxide to remove the organic metal compound from the discharge gas. The discharge gas from which an organic metal compound is removed is brought into contact with an ammonia decomposition catalyst on heating to decompose the ammonia into nitrogen and hydrogen. The discharge gas in which ammonia is decomposed is brought into contact with palladium alloy membrane on heating to recover hydrogen that has penetrated through the palladium alloy membrane.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: Japan Pionics Co., Ltd.
    Inventors: Kansei IZAKI, Masanori IWAKI, Yasusada MIYANO, Toshio AKIYAMA
  • Publication number: 20130312456
    Abstract: There are provided methods capable of easily and efficiently recovering and recycling ammonia from exhaust gas containing a small amount of ammonia, the exhaust gas being exhausted from a production process of a gallium nitride compound semiconductor. The method of recovering ammonia includes filtering exhaust gas containing ammonia, hydrogen, nitrogen, and a solid compound with a filter to remove the solid compound from the exhaust gas; pressurizing and cooling the filtered exhaust gas with a heat pump to liquefy ammonia contained in the filtered exhaust gas; and separating liquefied ammonia from hydrogen and nitrogen to recover liquefied ammonia. The method of recycling ammonia includes evaporating recovered liquid ammonia; mixing the evaporated ammonia with another crude ammonia to obtain mixed gas; purifying the mixed gas; and supplying the purified gas to the production process of a gallium nitride compound semiconductor.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Applicant: JAPAN PIONICS CO., LTD.
    Inventors: Kansei IZAKI, Masanori IWAKI, Toshio AKIYAMA
  • Patent number: 7585623
    Abstract: The present invention relates to a DNA having a promoter region containing regulatory sequences of human adiponectin gene, transformants transformed with the DNA, a screening method of a compound which can enhance the human adiponectin promoter activity, which the transformants are used, and the screening kit, and a screening method of a preventive/therapeutic medicine for syndromes such as Syndrome X, metabolic syndrome, multiple risk factor syndrome, insulin resistant syndrome, deadly quartet, and visceral fat syndrome, metabolic disorders such as diabetes, obesity, hypercholesterolemia, and hyperlipoproteinemias, hyperlipidemia, arteriosclerosis, hypertonia, circulatory system disease, and hyperphagia and a pharmaceutical composition obtained by using them.
    Type: Grant
    Filed: December 25, 2003
    Date of Patent: September 8, 2009
    Assignees: Ono Pharmaceutical Co., Ltd.
    Inventors: Yuji Matsuzawa, Iichiro Shimomura, Makoto Makishima, Tohru Funahashi, Masanori Iwaki
  • Publication number: 20060084618
    Abstract: The present invention relates to a DNA having a promoter region containing regulatory sequences of human adiponectin gene, transformants transformed with the DNA, a screening method of a compound which can enhance the human adiponectin promoter activity, which the transformants are used, and the screening kit, and a screening method of a preventive/therapeutic medicine for syndromes such as Syndrome X, metabolic syndrome, multiple risk factor syndrome, insulin resistant syndrome, deadly quartet, and visceral fat syndrome, metabolic disorders such as diabetes, obesity, hypercholesterolemia, and hyperlipoproteinemias, hyperlipidemia, arteriosclerosis, hypertonia, circulatory system disease, and hyperphagia and a pharmaceutical composition obtained by using them.
    Type: Application
    Filed: December 25, 2003
    Publication date: April 20, 2006
    Inventors: Yuji Matsuzawa, Iichiro Shimomura, Makoto Makishima, Tohru Funahashi, Masanori Iwaki
  • Patent number: 5259999
    Abstract: A process for producing a resin molded article having a diminished residual stress, which includes heating an injection-molded article of a thermoplastic resin by means of a combination of far infrared radiation with far infrared ray having a frequency of from 10.sup.11 to 10.sup.14 Hz and hot-air flow, thereby to diminish a residual stress in the molded article in a short period of time.
    Type: Grant
    Filed: January 8, 1992
    Date of Patent: November 9, 1993
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Tsuneaki Iwakiri, Toshiaki Izumida, Masanori Iwaki, Chikara Sadano