Patents by Inventor Masanori Koshiba

Masanori Koshiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9557476
    Abstract: A multicore fiber includes six or more of core elements having a core, a first clad surrounding the outer circumferential surface of the core and a second clad surrounding the outer circumferential surface of the first clad, and includes a clad surrounding the core elements. All of expressions are satisfied: n1>n2>n3, n1>n4, n3<n4, wherein the refractive index of the core is n1, the refractive index of the first clad is n2, the refractive index of the second clad is n3, and the refractive index of the clad is n4. The core elements are disposed so that the inter-center pitch between the cores adjacent to each other is disposed at regular spacing and the centers of the cores are annularly disposed.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: January 31, 2017
    Assignees: FUJIKURA LTD., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shoichiro Matsuo, Kunimasa Saitoh, Masanori Koshiba
  • Publication number: 20150316715
    Abstract: A multicore fiber includes six or more of core elements having a core, a first clad surrounding the outer circumferential surface of the core and a second clad surrounding the outer circumferential surface of the first clad, and includes a clad surrounding the core elements. All of expressions are satisfied: n1>n2>n3, n1>n4, n3<n4, wherein the refractive index of the core is n1, the refractive index of the first clad is n2, the refractive index of the second clad is n3, and the refractive index of the clad is n4. The core elements are disposed so that the inter-center pitch between the cores adjacent to each other is disposed at regular spacing and the centers of the cores are annularly disposed.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 5, 2015
    Applicants: FUJIKURA LTD., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shoichiro Matsuo, Kunimasa Saitoh, Masanori Koshiba
  • Patent number: 9081129
    Abstract: A multi-core fiber includes an even number of six or more of cores and a clad that surrounds the outer circumferential surfaces of the cores. The cores are formed of two types of cores and in which an effective refractive index difference in a fundamental mode is 0.002 or less in a predetermined range or more that the effective refractive index difference in the fundamental mode is varied according to a core pitch. Two types of the cores are alternately and annularly disposed at regular spacings. A difference in the mode field diameter of light propagating through the cores is 1 ?m or less.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: July 14, 2015
    Assignees: FUJIKURA LTD., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shoichiro Matsuo, Kunimasa Saitoh, Masanori Koshiba
  • Patent number: 9069118
    Abstract: A radius of a first core 21 in a large-diameter end surface EF1 of a tapered portion 31 is denoted by r1S, a radius of a second core 22 is denoted by r2S, a relative refractive index difference of the first core 21 with respect to a clad 23 is denoted by ?1, a relative refractive index difference of the second core 22 with respect to the clad 23 is denoted by ?2, a refractive index volume of the first core 21 is denoted by V1S, and a refractive index volume of the second core 22 is denoted by V2S, r2S/r1S is set to be 3 or more and 5 or less, V2S/V1S is set to be 1.07r22?13.5 or more and 1.07r22?11.5 or less, and r2S/r1S is set to be ?3×?1/?2+10 or more.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: June 30, 2015
    Assignees: FUJIKURA LTD., NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shoichiro Matsuo, Katsuhiro Takenaga, Kunimasa Saitoh, Masanori Koshiba
  • Patent number: 8971685
    Abstract: A multicore fiber includes a plurality of core elements; and a clad surrounding an outer periphery surface of each of the core elements, and each of the core elements includes a core, a first clad surrounding the outer periphery surface of the core and a second clad surrounding an outer periphery surface of the first clad, and when a refractive index of the core is n1, a refractive index of the first clad is n2, a refractive index of the second clad is n3 and a refractive index of the clad is n4, all of n1>n2>n3, n1>n4 and n3<n4 are satisfied.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: March 3, 2015
    Assignees: Fujikura Ltd., National University Corporation Hokkaido University
    Inventors: Shoichiro Matsuo, Katsuhiro Takenaga, Kunimasa Saitoh, Masanori Koshiba
  • Publication number: 20140334789
    Abstract: A multi-core fiber includes an even number of six or more of cores and a clad that surrounds the outer circumferential surfaces of the cores. The cores are formed of two types of cores and in which an effective refractive index difference in a fundamental mode is 0.002 or less in a predetermined range or more that the effective refractive index difference in the fundamental mode is varied according to a core pitch. Two types of the cores are alternately and annularly disposed at regular spacings. A difference in the mode field diameter of light propagating through the cores is 1 ?m or less.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 13, 2014
    Applicants: FUJIKURA LTD., NAT'L UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Shoichiro Matsuo, Kunimasa Saitoh, Masanori Koshiba
  • Patent number: 8811786
    Abstract: The multi-core fiber of the present invention uses a multi-core fiber configuration, compatible with the “coupled” operation mode in which coupling between cores is positively utilized, to carry out mode division multiplexing transmission via a multi-core fiber that contains multiple single-mode cores in one optical fiber. The multi-core fiber of the present invention uses a configuration in which mode multiplexing transmission is carried out using a multi-core fiber that contains multiple single-mode cores in one optical fiber, wherein multiple cores are strongly coupled intentionally to form a coupled multi-core fiber that makes the coupled modes correspond, one to one, to the transmission channels.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 19, 2014
    Assignees: National University Corporation Yokohama National University, National University Corporation Hokkaido University
    Inventors: Yasuo Kokubun, Masanori Koshiba, Toshio Morioka
  • Publication number: 20140010508
    Abstract: A radius of a first core 21 in a large-diameter end surface EF1 of a tapered portion 31 is denoted by r1S, a radius of a second core 22 is denoted by r2S, a relative refractive index difference of the first core 21 with respect to a clad 23 is denoted by ?1, a relative refractive index difference of the second core 22 with respect to the clad 23 is denoted by ?2, a refractive index volume of the first core 21 is denoted by V1S, and a refractive index volume of the second core 22 is denoted by V2S, r2S/r1S is set to be 3 or more and 5 or less, V2S/V1S is set to be 1.07r22?13.5 or more and 1.07r22?11.5 or less, and r2S/r1S is set to be ?3×?1/?2+10 or more.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 9, 2014
    Inventors: Shoichiro Matsuo, Katsuhiro Takenaga, Kunimasa Saitoh, Masanori Koshiba
  • Publication number: 20130243384
    Abstract: A multicore fiber includes a plurality of core elements; and a clad surrounding an outer periphery surface of each of the core elements, and each of the core elements includes a core, a first clad surrounding the outer periphery surface of the core and a second clad surrounding an outer periphery surface of the first clad, and when a refractive index of the core is n1, a refractive index of the first clad is n2, a refractive index of the second clad is n3 and a refractive index of the clad is n4, all of n1>n2>n3, n1>n4 and n3<n4 are satisfied.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Applicants: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, FUJIKURA LTD.
    Inventors: Shoichiro Matsuo, Katsuhiro Takenaga, Kunimasa Saitoh, Masanori Koshiba
  • Patent number: 8503847
    Abstract: A multi-core fiber of the present invention employs the multi-core fiber mode, which corresponds to the “uncoupled” operation aspect in which individual cores are used independently for single-mode transmission, to perform space division multiplexing transmission using a multi-core fiber in which multiple single-mode cores are stored in one optical fiber. More specifically, the multi-core fiber of the present invention forms an uncoupled multi-core fiber that makes individual cores correspond to single-mode, independent transmission channels.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 6, 2013
    Assignees: National University Corporation Yokohama National University, National University Corporation Hokkaido University
    Inventors: Yasuo Kokubun, Masanori Koshiba, Toshio Morioka
  • Publication number: 20110243517
    Abstract: A multi-core fiber of the present invention employs the multi-core fiber mode, which corresponds to the “uncoupled” operation aspect in which individual cores are used independently for single-mode transmission, to perform space division multiplexing transmission using a multi-core fiber in which multiple single-mode cores are stored in one optical fiber. More specifically, the multi-core fiber of the present invention forms an uncoupled multi-core fiber that makes individual cores correspond to single-mode, independent transmission channels.
    Type: Application
    Filed: October 2, 2009
    Publication date: October 6, 2011
    Applicants: National University Corporation Yokohama National University, National University Corporation Hokkaido Universit
    Inventors: Yasuo Kokubun, Masanori Koshiba, Toshio Morioka
  • Publication number: 20110188855
    Abstract: The multi-core fiber of the present invention uses a multi-core fiber configuration, compatible with the “coupled” operation mode in which coupling between cores is positively utilized, to carry out mode division multiplexing transmission via a multi-core fiber that contains multiple single-mode cores in one optical fiber. The multi-core fiber of the present invention uses a configuration in which mode multiplexing transmission is carried out using a multi-core fiber that contains multiple single-mode cores in one optical fiber, wherein multiple cores are strongly coupled intentionally to form a coupled multi-core fiber that makes the coupled modes correspond, one to one, to the transmission channels.
    Type: Application
    Filed: October 2, 2009
    Publication date: August 4, 2011
    Applicants: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY, NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSIT
    Inventors: Yasuo Kokubun, Masanori Koshiba, Toshio Morioka
  • Patent number: 7075390
    Abstract: The surface acoustic wave device has the surface acoustic wave transducer, which consists of the positive electrode finger 102, the negative electrode finger 204, and the floating electrode 300, which are formed on the surface of the langasite single crystal substrate, where the substrate orientation and the surface acoustic wave propagation direction are chosen so that it may have the natural unidirectional property. When the wavelength of the surface acoustic wave is ?, each above-mentioned electrode is formed along the surface acoustic wave propagation direction, so that the width of above-mentioned positive electrode finger and the negative electrode finger may be about ?/8, the distance g between each center of the positive electrode finger and the floating electrode may be 13/40??g?14/40?, and the width W of the floating electrode may be 11/40??W?13/40?.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: July 11, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventors: Akihiro Bungo, Ryohei Kimura, Koji Hasegawa, Masanori Koshiba
  • Patent number: 6985660
    Abstract: An optical fiber comprises a core region extending along a predetermined axis X, and a cladding region surrounding the core region. The cladding region 14 comprises first to (N+1)-th regions such that the first region surrounds the core region, and the (k+1)-th region surrounds the k-th region (k=1, 2, . . . , N). At least one of the first to (N+1)-th regions includes, in a main medium having a predetermined refractive index, a sub-region made of an auxiliary medium having a refractive index different from that of the main medium. Letting n[0] be the average refractive index of the core region, and n[k] (k=1, 2, . . . , N+1) be the average refractive index of the k-th region, this optical fiber satisfies the relationship of n[0]>n[1], and n[i]>n[i+1] (?i=h, h+1, . . . , h+m; where h and m are natural numbers).
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: January 10, 2006
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masanori Koshiba, Kunimasa Saitoh
  • Publication number: 20040114897
    Abstract: An optical fiber comprises a core region extending along a predetermined axis X, and a cladding region surrounding the core region. The cladding region 14 comprises first to (N+1)-th regions such that the first region surrounds the core region, and the (k+1)-th region surrounds the k-th region (k=1, 2, . . . , N). At least one of the first to (N+1)-th regions includes, in a main medium having a predetermined refractive index, a sub-region made of an auxiliary medium having a refractive index different from that of the main medium. Letting n[0] be the average refractive index of the core region, and n[k] (k=1, 2, . . . , N+1) be the average refractive index of the k-th region, this optical fiber satisfies the relationship of n[0]>n[1], and n[i]>n[i+1] (∀i=h, h+1, . . . , h+m; where h and m are natural numbers).
    Type: Application
    Filed: December 10, 2003
    Publication date: June 17, 2004
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masanori Koshiba, Kunimasa Saitoh