Patents by Inventor Masanori Maekawa
Masanori Maekawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240234712Abstract: A non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode having a positive electrode current collector and a positive electrode mixture layer that contains a positive electrode active material and that is formed on the surface of the positive electrode current collector, the positive electrode active material including a lithium-containing composite oxide represented by a prescribed general formula, the lithium-containing composite oxide having secondary particles formed by aggregation of primary particles, Ca being present on the surfaces and in the interiors of the secondary particles, and the proportion of Ca present on the surfaces of the secondary particles being 12-58% relative to the total amount of Ca present on the surfaces and in the interiors of the secondary particles.Type: ApplicationFiled: February 22, 2022Publication date: July 11, 2024Applicant: Panasonic Energy Co., Ltd.Inventors: Takayuki Ishikawa, Kaoru Nagata, Masanori Maekawa
-
Publication number: 20240136517Abstract: A non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode having a positive electrode current collector and a positive electrode mixture layer that contains a positive electrode active material and that is formed on the surface of the positive electrode current collector, the positive electrode active material including a lithium-containing composite oxide represented by a prescribed general formula, the lithium-containing composite oxide having secondary particles formed by aggregation of primary particles, Ca being present on the surfaces and in the interiors of the secondary particles, and the proportion of Ca present on the surfaces of the secondary particles being 12-58% relative to the total amount of Ca present on the surfaces and in the interiors of the secondary particles.Type: ApplicationFiled: February 22, 2022Publication date: April 25, 2024Applicant: Panasonic Energy Co., Ltd.Inventors: Takayuki Ishikawa, Kaoru Nagata, Masanori Maekawa
-
Publication number: 20230317941Abstract: A positive electrode active material for nonaqueous electrolyte secondary batteries according to one embodiment of the present disclosure contains a lithium transition metal composite oxide which is represented by general formula LiaNibCocAldXeOf (wherein 0.9?a?1.2; 0.88?b?0.96; 0?c?0.12; 0?d?0.12; 0?e?0.1; 1.9?f?2.1; (b+c+d)=1; and X represents at least one element that is selected from among Mn, Mg, Ca, Sr, Ba, Ti, Zr, V, Nb, Ta, Mo, W and B); and the lithium transition metal composite oxide has a pore volume of pores having a pore diameter of 0.3 ?m or less of from 6×10?4 mL/g to 50×10?4 mL/g, while having a particle fracture strength of 120 MPa or more at the volume average particle diameter.Type: ApplicationFiled: August 26, 2021Publication date: October 5, 2023Applicant: SANYO Electric Co., Ltd.Inventors: Masanori Maekawa, Takayuki Ishikawa, Kaoru Nagata
-
Publication number: 20230282817Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35 r of the center.Type: ApplicationFiled: April 11, 2023Publication date: September 7, 2023Applicants: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita
-
Patent number: 11658295Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35r of the center.Type: GrantFiled: September 20, 2019Date of Patent: May 23, 2023Assignees: PANASONIC HOLDINGS CORPORATION, SANYO Electric Co., Ltd.Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita
-
Publication number: 20230065283Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery according to an aspect of the present disclosure contains a lithium metal composite oxide having secondary particles formed by the aggregation of primary particles, wherein W is present on the surface and inside of the secondary particles of the lithium metal composite oxide. The amount of W present on the surface of the secondary particles of the lithium metal composite oxide represented by general formula Li?NiaCobAlcMdWeO? (in the formula, 0.9???1.2, 0.8?a?0.96, 0<b?0.10, 0<c?0.10, 0?d?0.1, 0.0003?e/(a+b+c+d+e)?0.002, 1.9???2.1, a+b+c+d=1, and M is at least one element selected from among Mn, Fe, Ti, Si, Nb, Zr, Mo, and Zn) is 25-45% of the total amount of W present on the surface and inside of the secondary particles of the lithium metal composite oxide.Type: ApplicationFiled: January 22, 2021Publication date: March 2, 2023Applicant: SANYO Electric Co., Ltd.Inventors: Takayuki Ishikawa, Kaoru Nagata, Masanori Maekawa
-
Publication number: 20220216470Abstract: In a non-aqueous electrolyte secondary battery that is one example of the embodiment, a positive electrode mix layer comprises a positive electrode active material comprising a lithium transition metal composite oxide represented by general formula: LiaNibCo(1-b-c)AlcOd (0.9<a?1.2, 0.88?b?0.96, 0.04?c?0.12, 1.9?d?2.1) and lithium carbonate in an amount of 0.1 to 1.0% by mass relative to the mass of the positive electrode active material. The lithium transition metal composite oxide has the form of secondary particles formed by the aggregation of primary particles, wherein tungsten is present, on the surface of each of the primary particles, in an amount of 0.05 to 0.20 mol % relative to the total molar amount of non-Li-metal elements contained in the positive electrode active material.Type: ApplicationFiled: April 15, 2020Publication date: July 7, 2022Applicant: SANYO Electric Co., Ltd.Inventors: Masanori Maekawa, Takayuki Ishikawa, Kaoru Nagata
-
Publication number: 20200020941Abstract: This cathode active material for a secondary battery using a non-aqueous electrolyte includes nickel-rich lithium transition-metal oxide, exhibits a hard X-ray photoelectron spectroscopy (HAXPES) peak of 1,560 to 1,565 eV in binding energy from an Al-rich layer, using a photon energy of 6 KeV, and with respect to the mean particle diameter r of the lithium transition-metal oxide particle, the Al concentration is approximately constant within 0.35 r of the center.Type: ApplicationFiled: September 20, 2019Publication date: January 16, 2020Applicants: Panasonic Corporation, SANYO Electric Co., Ltd.Inventors: Miki Mizawa, Kaoru Nagata, Masanori Maekawa, Masahiro Kinoshita
-
Patent number: 9640798Abstract: A nonaqueous electrolyte secondary battery according to one aspect of the present invention contains a dispersant in a positive electrode mixture layer. The content of a positive electrode active material in the positive electrode mixture layer is 97% by mass or more, and the content ratio of a conductive agent to a binder in the positive electrode mixture layer is 1.00-1.67. The binder is composed of a polyvinylidene fluoride which has a carboxyl group or a carboxyl group derivative as a terminal functional group.Type: GrantFiled: October 25, 2013Date of Patent: May 2, 2017Assignee: SANYO Electric Co., Ltd.Inventors: Masanori Maekawa, Yasunobu Iwami, Akira Kinoshita
-
Patent number: 9590234Abstract: The present invention has an object to provide a nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics. A nonaqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode plate containing a lithium-cobalt composite oxide and a lithium-nickel-cobalt-manganese composite oxide (LiaNibCocMn1-b-cO, 0.9<a?1.2, 0<b?0.8, 0<c?0.9) having an average primary particle size of 1.2 ?m to 5.0 ?m and a negative electrode which contains one of silicon (Si) and silicon oxide (SiOx, 0.5?x<1.6) and which includes a negative electrode active material that stores and releases lithium ions.Type: GrantFiled: October 25, 2013Date of Patent: March 7, 2017Assignee: SANYO Electric Co., Ltd.Inventors: Yusuke Nishio, Masanori Maekawa
-
Patent number: 9238314Abstract: The method is capable of resin-molding one side face of a work in a molding die set, in which the work is sucked and held on at least one of clamping faces and resin-molded in a cavity concave section. The method comprises the steps of: sucking and holding a release film which covers at least one of the clamping faces of the molding die set; setting the work in the molding die set; sucking the other side face of the work through a work sucking hole of the release film, which is formed before or after holding the release film, so as to hold the work on the clamping face; closing the molding die set so as to clamp the work; and pressurizing and heating the resin, which has been accommodated in the cavity concave section, with resin.Type: GrantFiled: November 29, 2012Date of Patent: January 19, 2016Assignee: APIC YAMADA CORPORATIONInventors: Shusaku Tagami, Yoshikazu Muramatsu, Masanori Maekawa, Hideaki Nakazawa, Masahiko Fujisawa, Takuya Miyamoto
-
Publication number: 20150318537Abstract: The present invention has an object to provide a nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics. A nonaqueous electrolyte secondary battery according to an embodiment of the present invention includes a positive electrode plate containing a lithium-cobalt composite oxide and a lithium-nickel-cobalt-manganese composite oxide (LiaNibCocMn1-b-cO, 0.9<a?1.2, 0<b?0.8, 0<c?0.9) having an average primary particle size of 1.2 ?m to 5.0 ?m and a negative electrode which contains one of silicon (Si) and silicon oxide (SiOx, 0.5?x<1.6) and which includes a negative electrode active material that stores and releases lithium ions.Type: ApplicationFiled: October 25, 2013Publication date: November 5, 2015Applicants: SANYO ELECTRIC CO., LTD., SANYO Electric Co., Ltd.Inventors: Yusuke Nishio, Masanori Maekawa
-
Publication number: 20150270553Abstract: A nonaqueous electrolyte secondary battery according to one aspect of the present invention contains a dispersant in a positive electrode mixture layer. The content of a positive electrode active material in the positive electrode mixture layer is 97% by mass or more, and the content ratio of a conductive agent to a binder in the positive electrode mixture layer is 1.00-1.67. The binder is composed of a polyvinylidene fluoride which has a carboxyl group or a carboxyl group derivative as a terminal functional group.Type: ApplicationFiled: October 25, 2013Publication date: September 24, 2015Applicant: SANYO Electric Co., Ltd.Inventors: Masanori Maekawa, Yasunobu Iwami, Akira Kinoshita
-
Patent number: 8727757Abstract: The molding die set includes: a first molding die having a first molding chase, a cavity piece, supported by the first molding chase, movably supported by the first molding chase and enclosing the cavity piece; a second molding die having a second molding chase, a work supporting section biased and supported by the second molding chase and on which a work will be mounted, and a center insert located adjacent to the work supporting section; and a pot being provided to one of the first molding die and the second molding die, the pot feeding resin for molding the work. The second molding die has a thickness adjusting mechanism, which makes the work supporting section absorb thickness variation of the work and brings the work into contact with the movable clamper when the work is clamped with the movable clamper of the first molding die.Type: GrantFiled: January 30, 2012Date of Patent: May 20, 2014Assignee: Apic Yamada CorporationInventors: Masanori Maekawa, Tomokazu Takahashi
-
Patent number: 8388703Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.Type: GrantFiled: May 11, 2012Date of Patent: March 5, 2013Assignee: SANYO Electric Co., Ltd.Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
-
Publication number: 20130028998Abstract: The molding die set includes: a first molding die having a first molding chase, a cavity piece, supported by the first molding chase, movably supported by the first molding chase and enclosing the cavity piece; a second molding die having a second molding chase, a work supporting section biased and supported by the second molding chase and on which a work will be mounted, and a center insert located adjacent to the work supporting section; and a pot being provided to one of the first molding die and the second molding die, the pot feeding resin for molding the work. The second molding die has a thickness adjusting mechanism, which makes the work supporting section absorb thickness variation of the work and brings the work into contact with the movable clamper when the work is clamped with the movable clamper of the first molding die.Type: ApplicationFiled: January 30, 2012Publication date: January 31, 2013Inventors: Masanori Maekawa, Tomokazu Takahashi
-
Publication number: 20120280172Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.Type: ApplicationFiled: May 11, 2012Publication date: November 8, 2012Applicant: SANYO ELECTRIC CO., LTD.Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
-
Publication number: 20120180549Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 1500° C. or lower; measuring the amount of carbon dioxide gas occurring from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 1 and 2: y<(0.27x?51)/1000000(200?x<400)??formula 1 y<57/1000000(400?x?1500)??formula 2 where x is the heating temperature x (° C.) and y is the amount of carbon dioxide gas (mole/g) occurring per 1 g of the positive electrode active material in the heating to the heating temperature x (° C.).Type: ApplicationFiled: March 28, 2012Publication date: July 19, 2012Applicant: SANYO Electric Co., Ltd.Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
-
Patent number: 8197556Abstract: A method for producing a non-aqueous electrolyte secondary cell by preparing a positive electrode by applying a positive electrode mixture onto a positive electrode core material, the mixture containing a positive electrode active material mainly made of a lithium nickel composite oxide and a binding agent containing polyvinylidene fluoride; measuring the amount of carbon dioxide gas generated when a layer of the positive electrode mixture is removed out of the positive electrode and the layer is heated to 200° C. or higher and 400° C. or lower in an inactive gas atmosphere; selecting a positive electrode satisfying the following formulas: y<(1.31x?258)/1000000(200?x<300)??formula 3 y<1.20x?225/1000000(300?x?400)??formula 4 where x is a heating temperature (° C.) and y is the amount of carbon dioxide gas (mole/g) per 1 g of the lithium nickel composite oxide measured; and preparing the non-aqueous electrolyte secondary cell by using the positive electrode selected.Type: GrantFiled: November 11, 2008Date of Patent: June 12, 2012Assignee: SANYO Electric Co., Ltd.Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta
-
Patent number: 8166794Abstract: A positive electrode active material quality judgment method that can easily and accurately judge the quality of a positive electrode active material used in a non-aqueous electrolyte secondary cell without having to complete the positive electrode. The positive electrode active material quality judgment method includes: heating a positive electrode active material mainly made of a lithium nickel composite oxide to a temperature x (° C.) of 200° C. or higher and 400° C. or lower; measuring the amount of carbon dioxide gas generated from the heating; and the positive electrode active material as a suitable positive electrode active material when the positive electrode active material satisfies formulas 3 and 4: y<(1.31x?258)/1000000(200?x<300)??formula 3 y<1.20x?225/1000000(300?x?400)??formula 4 where x is the heating temperature x (° C.) and y is the amount of carbon dioxide gas (mole/g) generated per 1 g of the positive electrode active material in the heating to the heating temperature x (° C.).Type: GrantFiled: November 11, 2008Date of Patent: May 1, 2012Assignee: SANYO Electric Co., Ltd.Inventors: Katsutoshi Takeda, Yoshio Kato, Shingo Tode, Masanori Maekawa, Shigeki Matsuta