Patents by Inventor Masao Ikeda

Masao Ikeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140345681
    Abstract: There is provided a multi-junction solar cell that reduces contact resistance of a junction portion and is capable of performing energy conversion with high efficiency. The multi-junction solar cell includes a plurality of sub-cells 11, 12, 13, and 14 that are laminated, the plurality of sub-cells 11, 12, 13, and 14 being configured of a plurality of compound semiconductor layers 11A, 11B, 11C, 12A, 12B, 12C, 13A, 13B, 13C, 14A, 14B, and 14C that are laminated. Amorphous connection layers 20A and 20B made of electrically-conductive material are provided in at least one place between the sub-cells 12 and 13 adjacent to each other.
    Type: Application
    Filed: September 3, 2012
    Publication date: November 27, 2014
    Inventors: Hiroshi Yoshida, Masao Ikeda, Shiro Uchida, Takashi Tange, Masaru Kuramoto, Masayuki Arimochi, Hui Yang, Shulong Lu, Xinhe Zheng
  • Publication number: 20140345680
    Abstract: A multi-junction solar cell that is lattice-matched with a base, and that includes a sub-cell having a desirable band gap is provided. A plurality of sub-cells are laminated, each including first and second compound semiconductor layers. At least one predetermined sub-cell is configured of first layers and a second layer. In each of the first layers, a 1-A layer and a 1-B layer are laminated. In the second layer, a 2-A layer and a 2-B layer are laminated. A composition A of the 1-A layer and the 2-A layer is determined based on a value of a band gap of the predetermined sub-cell. A composition B of the 1-B layer and the 2-B layer is determined based on a difference between a base lattice constant of the base and a lattice constant of the composition A. Thicknesses of 1-B layer and 2-B layer are determined based on difference between base lattice constant and a lattice constant of composition B, and on thickness of the 1-A layer and thickness of 2-A layer.
    Type: Application
    Filed: September 3, 2012
    Publication date: November 27, 2014
    Inventors: Hiroshi Yoshida, Masao Ikeda, Shiro Uchida, Takashi Tange, Masaru Kuramoto, Masayuki Arimochi, Hui Yang, Shulong Lu, Xinhe Zheng
  • Patent number: 8786941
    Abstract: A semiconductor optical amplifier includes: a laminated structure sequentially including a first compound semiconductor layer composed of GaN compound semiconductor and having a first conductivity type, a third compound semiconductor layer having a light amplification region composed of GaN compound semiconductor, and a second compound semiconductor layer composed of GaN compound semiconductor and having a second conductivity type; a second electrode formed on the second compound semiconductor layer; and a first electrode electrically connected to the first compound semiconductor layer. The laminated structure has a ridge stripe structure. When widths of the ridge stripe structure in a light output end face and the ridge stripe structure in a light incident end face are respectively Wout, and Win, Wout>Win is satisfied. A carrier non-injection region is provided in an internal region of the laminated structure from the light output end face along an axis line of the semiconductor optical amplifier.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 22, 2014
    Assignees: Sony Corporation, Tohoku University
    Inventors: Masaru Kuramoto, Masao Ikeda, Rintaro Koda, Tomoyuki Oki, Hideki Watanabe, Takao Miyajima, Hiroyuki Yokoyama
  • Publication number: 20140079086
    Abstract: A laser diode capable of performing self-pulsation operation, and capable of sufficiently reducing the coherence of laser light and stably obtaining low-noise laser light is provided. The laser diode includes: a laser chip including at least one laser stripe which extends in a resonator length direction between a first end surface and a second end surface opposed to each other, in which the laser stripe includes a gain region and a saturable absorption region in the resonator length direction, and the width of the laser stripe in the saturable absorption region is larger than the width of the laser stripe in the gain region.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicants: Tohoku University, Sony Corporation
    Inventors: Makoto Oota, Hiroyuki Yokoyama, Masaru Kuramoto, Masao Ikeda
  • Publication number: 20140033830
    Abstract: A grinding abnormality monitoring method and device for grinding a plurality of works of the same type are proposed which can improve the accuracy of judgment whether an abnormality is generated or not by properly setting a threshold value. According to the method or the device, by setting at least one of upper and lower limit values of a trial grinding load detected at the trial grinding of at least one of the works, an occurrence of grinding abnormality is judged when an actual grinding load detected at the actual grinding of work exceeds at least one of the upper and lower limit values thereof which varies depending on the time elapsed from the start of the actual grinding or a position of work relative to a grinding wheel.
    Type: Application
    Filed: December 22, 2011
    Publication date: February 6, 2014
    Applicant: JTEKT Corporation
    Inventors: Tomoyuki Kasuga, Atsushi Saito, Takayuki Yoshimi, Masao Ikeda
  • Patent number: 8615027
    Abstract: A laser diode capable of performing self-pulsation operation, and capable of sufficiently reducing the coherence of laser light and stably obtaining low-noise laser light is provided. A laser diode includes: a laser chip including at least one laser stripe which extends in a resonator length direction between a first end surface and a second end surface opposed to each other, in which the laser stripe includes a gain region and a saturable absorption region in the resonator length direction, and the width of the laser stripe in the saturable absorption region is larger than the width of the laser stripe in the gain region.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 24, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Makoto Oota, Hiroyuki Yokoyama, Masaru Kuramoto, Masao Ikeda
  • Patent number: 8591525
    Abstract: The hemorrhoid ligation apparatus (10) includes a main cylinder (12) to which an O-ring (50) for ligating the hemorrhoid is to be attached on an outer circumferential surface of a front end portion, a sub cylinder (14) air-tightly and slidably provided inside the main cylinder (12), so as to suck the hemorrhoid into the front end portion of the main cylinder (12) upon being drawn toward a rear end portion of the main cylinder (12), an operating fluid loaded inside the sub cylinder (14), and a plunger (16) air-tightly and slidably provided inside the sub cylinder (14), so as to pressurize the operating fluid upon being squeezed toward a front end portion of the sub cylinder (14), to thereby squeeze the O-ring (50) toward the front end portion of the main cylinder (12) with the pressurized operating fluid, thus detaching the O-ring (50) from the main cylinder (12).
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 26, 2013
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventor: Masao Ikeda
  • Patent number: 8587004
    Abstract: A semiconductor light emitting device made of nitride III-V compound semiconductors including an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: November 19, 2013
    Assignee: Sony Corporation
    Inventors: Osamu Goto, Takeharu Asano, Yasuhiko Suzuki, Motonobu Taketani, Katsuyoshi Shibuya, Takashi Mizuno, Tsuyoshi Tojo, Shiro Uchida, Masao Ikeda
  • Patent number: 8588264
    Abstract: An ultrashort pulse/ultra-high power laser diode with a simple structure and configuration is provided. In a method of driving a laser diode, the laser diode is driven by a pulse current which is 10 or more times higher than a threshold current value. The width of the pulse current is preferably 10 nanoseconds or less, and the value of the pulse current is specifically 0.4 amperes or over.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: November 19, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda, Takao Miyajima, Hideki Watanabe
  • Patent number: 8575626
    Abstract: A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 5, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hideki Watanabe, Takao Miyajima, Masao Ikeda, Hiroyuki Yokoyama, Tomoyuki Oki, Masaru Kuramoto
  • Publication number: 20130253580
    Abstract: An adhesive applicator for biological tissue (100) includes a nozzle body (1), a gas inlet (2), medical fluid inlets (3a, 3b), medical fluid outlets (4a, 4b), medical fluid tubes (5a, 5b), a gas outlet (6), communication paths (8a, 8b), and a check valve (7b). The gas outlet (6) is located close to the medical fluid outlets (4a, 4b), and configured to eject gas loaded through the gas inlet (2) in the nozzle body (1) to thereby atomize medical fluids and mix them together. The communication paths (8a, 8b) communicate between inside of the nozzle body (1) and inside of the medical fluid tube (5b). The check valve (7b) is located between the communication paths (8a, 8b) and the medical fluid inlet (3b). The check valve (7b) only allows one-way flow of the medical fluid from the medical fluid inlet (3b) into the medical fluid tube (5b).
    Type: Application
    Filed: November 7, 2011
    Publication date: September 26, 2013
    Applicants: THE CHEMO-SERO-THERAPEUTIC RESEARCH INSTITUTE, SUMITOMO BAKELITE CO., LTD.
    Inventors: Zenetsu Suzuki, Masao Ikeda, Takanori Uchida, Osamu Ichiki, Shirou Oka
  • Publication number: 20130230936
    Abstract: A semiconductor light emitting device made of nitride III-V compound semiconductors including an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.
    Type: Application
    Filed: April 5, 2013
    Publication date: September 5, 2013
    Applicant: Sony Corporation
    Inventors: OSAMU GOTO, TAKEHARU ASANO, YASUHIKO SUZUKI, MOTONOBU TAKETANI, KATSUYOSHI SHIBUYA, TAKASHI MIZUNO, TSUYOSHI TOJO, SHIRO UCHIDA, MASAO IKEDA
  • Patent number: 8460958
    Abstract: A method of manufacturing a semiconductor light emitting device made of nitride III-V compound semiconductors is includes an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: June 11, 2013
    Assignee: Sony Corporation
    Inventors: Osamu Goto, Takeharu Asano, Yasuhiko Suzuki, Motonobu Takeya, Katsuyoshi Shibuya, Takashi Mizuno, Tsuyoshi Tojo, Shiro Uchida, Masao Ikeda
  • Patent number: 8442079
    Abstract: Provided is a driving method of a mode-locked semiconductor laser device comprising a laminated structure in which a first compound semiconductor layer, a third compound semiconductor layer having an emission region and a second compound semiconductor layer are successively laminated, a second electrode, and a first electrode. The laminated structure is formed on a compound semiconductor substrate having polarity, the third compound semiconductor layer includes a quantum well structure having a well layer and a barrier layer. The well layer has a depth of 1 nm or more and 10 nm or less. The barrier layer has an impurity doping density of 2×1018 cm?3 or more and 1×1020 cm?3 or less. An optical pulse is generated in the emission region by passing a current from the second electrode to the first electrode via the laminated structure.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 14, 2013
    Assignees: Sony Corporation, Tohoku University
    Inventors: Tomoyuki Oki, Masaru Kuramoto, Masao Ikeda, Takao Miyajima, Hideki Watanabe, Hiroyuki Yokoyama
  • Patent number: 8329483
    Abstract: A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 11, 2012
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hideki Watanabe, Takao Miyajima, Masao Ikeda, Hiroyuki Yokoyama, Tomoyuki Oki, Masaru Kuramoto
  • Publication number: 20120281726
    Abstract: A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicants: Tohoku University, Sony Corporation
    Inventors: Hideki Watanabe, Takao Miyajima, Masao Ikeda, Hiroyuki Yokoyama, Tomoyuki Oki, Masaru Kuramoto
  • Patent number: 8303607
    Abstract: A medical device includes a main body elongated in a vertical direction. A guide section protrudes from a lower end of the main body in a direction crossing the vertical direction and includes first and second guide holes. A first unit includes a first puncture needle slidably supported by the main body near an upper end of the first puncture needle in the vertical direction and having a sharp lower end slidably inserted into the first guide hole from above. The first unit has a first holding plate integrally fixed to the first puncture needle. A second unit includes a second puncture needle slidably inserted into the second guide hole from above and a second holding plate integrally fixed to the second puncture needle. The second holding plate separably abuts on the first holding plate from above. A position of the second guide hole is selectable along the guide section.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 6, 2012
    Assignees: Sumitomo Bakelite Co., Ltd.
    Inventors: Yutaka Suzuki, Hideaki Matsunami, Yukihiko Sakaguchi, Masao Ikeda, Yasunori Kojo
  • Patent number: 8290005
    Abstract: An ultrashort pulse/ultra-high power laser diode with a simple structure and configuration is provided. In a method of driving a laser diode, the laser diode is driven by a pulse current which is 10 or more times higher than a threshold current value. The width of the pulse current is preferably 10 nanoseconds or less, and the value of the pulse current is specifically 0.4 amperes or over.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: October 16, 2012
    Assignees: Sony Corporation, Tohoku University
    Inventors: Hiroyuki Yokoyama, Shunsuke Kono, Tomoyuki Oki, Masao Ikeda, Takao Miyajima, Hideki Watanabe
  • Patent number: 8277463
    Abstract: A medical device (1) includes a main body (2); a first piercing needle (4) provided slidably with respect to the main body (2); a first holding plate (61) adapted to hold the first piercing needle (4) and provided slidably on the main body (2); and a second holding plate (62) adapted to hold a second piercing needle (3) and detachably and movably mounted on the first holding plate (61), wherein the second holding plate (62) is mounted so as to move to the first holding plate (61) in a predetermined direction.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: October 2, 2012
    Assignees: Sumitomo Bakelite Co., Ltd.
    Inventors: Yutaka Suzuki, Hideaki Matsunami, Yasunori Kojo, Yukihiko Sakaguchi, Masao Ikeda
  • Publication number: 20120220902
    Abstract: An inner diameter measurement instrument (100) includes a first channel (120) and a second channel (140) respectively communicating with a balloon (110), a fluid injection mechanism (130), a fluid lock mechanism (150), and an amount measurement unit (160). The fluid injection mechanism (130) injects an incompressible fluid into the balloon (110) through the first channel (120) or the second channel (140). The fluid lock mechanism (150) closes the first channel (120) or the second channel (140). The amount measurement unit (160) measures the amount of an incompressible measurement fluid additionally injected after the balloon (110), the first channel (120), and the second channel (140) are filled with the fluid and the fluid lock mechanism (150) closes one of the first channel (120) and the second channel (140), by the fluid injection mechanism (130) through the other of the first channel (120) and the second channel (140).
    Type: Application
    Filed: November 19, 2010
    Publication date: August 30, 2012
    Applicant: SUMITOMO BAKELITE CO., LTD.
    Inventors: Hiroaki Hashido, Masao Ikeda