Patents by Inventor Masao Matsumura

Masao Matsumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240064425
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Applicant: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki NISHIHARA, Tomohiro TAKAHASHI, Masao MATSUMURA, Tsutomu IMOTO
  • Patent number: 11832005
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Grant
    Filed: March 21, 2023
    Date of Patent: November 28, 2023
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki Nishihara, Tomohiro Takahashi, Masao Matsumura, Tsutomu Imoto
  • Publication number: 20230224601
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 13, 2023
    Applicant: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki NISHIHARA, Tomohiro TAKAHASHI, Masao MATSUMURA, Tsutomu IMOTO
  • Patent number: 11641529
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: May 2, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Toshiyuki Nishihara, Tomohiro Takahashi, Masao Matsumura, Tsutomu Imoto
  • Publication number: 20220368841
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Application
    Filed: July 12, 2022
    Publication date: November 17, 2022
    Applicant: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki NISHIHARA, Tomohiro TAKAHASHI, Masao MATSUMURA, Tsutomu IMOTO
  • Patent number: 11431927
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: August 30, 2022
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki Nishihara, Tomohiro Takahashi, Masao Matsumura, Tsutomu Imoto
  • Patent number: 11313980
    Abstract: The present technology relates to a radiation detection apparatus that makes it possible to obtain a projection image of a radiation in a short period of time. The radiation detection apparatus includes a scintillator that emits scintillation light in response to incidence of a radiation, a pixel substrate on which a plurality of pixels each of which photoelectrically converts the scintillation light and outputs a pixel signal according to a light amount of the scintillation light is disposed in an array, a detection circuit substrate that includes an A/D (Analog to Digital) conversion unit for A/D converting the pixel signal and is stacked on the pixel substrate, and a compression unit that compresses digital data outputted from the A/D conversion unit. The present technology can be applied, for example, to an X-ray imaging apparatus that detects an X-ray to perform imaging and so forth.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 26, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Toshiyuki Nishihara, Tsutomu Imoto, Masao Matsumura, Hiroyasu Baba
  • Publication number: 20200382727
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Toshiyuki NISHIHARA, Tomohiro TAKAHASHI, Masao MATSUMURA, Tsutomu IMOTO
  • Patent number: 10816680
    Abstract: The present disclosure relates to a detection device and electronic equipment, in which a detection accuracy of minute light can be improved. A detection device includes: a pixel array portion in which a plurality of first pixels including a photoelectric conversion unit, and a plurality of second pixels not including a photoelectric conversion unit, are arranged; and a driving unit configured to drive the first pixel and the second pixel. The present technology, for example, can be applied to a light detector, a radiation counter device performing radiation counting by using the light detector, and a biological examination device using the light detector, such as a flow cytometer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: October 27, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki Nishihara, Masao Matsumura, Tsutomu Imoto
  • Patent number: 10771719
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: September 8, 2020
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Toshiyuki Nishihara, Tomohiro Takahashi, Masao Matsumura, Tsutomu Imoto
  • Publication number: 20200200923
    Abstract: The present technology relates to a radiation detection apparatus that makes it possible to obtain a projection image of a radiation in a short period of time. The radiation detection apparatus includes a scintillator that emits scintillation light in response to incidence of a radiation, a pixel substrate on which a plurality of pixels each of which photoelectrically converts the scintillation light and outputs a pixel signal according to a light amount of the scintillation light is disposed in an array, a detection circuit substrate that includes an A/D (Analog to Digital) conversion unit for A/D converting the pixel signal and is stacked on the pixel substrate, and a compression unit that compresses digital data outputted from the A/D conversion unit. The present technology can be applied, for example, to an X-ray imaging apparatus that detects an X-ray to perform imaging and so forth.
    Type: Application
    Filed: July 11, 2018
    Publication date: June 25, 2020
    Inventors: TOSHIYUKI NISHIHARA, TSUTOMU IMOTO, MASAO MATSUMURA, HIROYASU BABA
  • Patent number: 10591618
    Abstract: The X-ray detection device according to an aspect of the present disclosure includes a scintillator that generates scintillation light in response to incident X-rays; a detection unit including a plurality of pixels each generating a pixel signal in response to the scintillation light incident thereon; and an output unit that generates X-ray two-dimensional projection data by using the pixel signals of the pixels. A pixel of the detection unit includes a plurality of subpixels that performs photoelectric conversion in response to the scintillation light; an AD conversion unit that applies AD conversion to outputs of the subpixels; and an adder that generates the pixel signal corresponding to the pixel by adding up outputs of the plurality of subpixels after the AD conversion. The present disclosure is applicable to an X-ray CT device and an X-ray FPD device.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: March 17, 2020
    Assignee: SONY CORPORATION
    Inventors: Toshiyuki Nishihara, Kenichi Okumura, Tsutomu Imoto, Masao Matsumura
  • Patent number: 10594961
    Abstract: The present disclosure relates to a solid state imaging device, a drive control method therefor, an image processing method, and an electronic apparatus capable of achieving both generation of a pixel signal with a high dynamic range and generation of phase difference information. A pixel array unit of the solid state imaging device is configured such that a plurality of pixels each having the same light receiving region is arranged in a matrix, and light that has entered a single microlens enters the plurality of pixels adjacent to each other. In addition, a first pixel and a second pixel included in the plurality of pixels below the microlens of the pixel array unit are set to have a sensitivity difference. The technique of the present disclosure can be applied to, for example, a solid state imaging device or the like.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: March 17, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Isao Hirota, Masao Matsumura
  • Publication number: 20190222783
    Abstract: The present technology relates to an imaging element that can reduce noise. The imaging element includes: a photoelectric conversion element; a first amplification element that amplifies a signal from the photoelectric conversion element; a second amplification element that amplifies an output from the first amplification element; an offset element provided between the first amplification element and the second amplification element; a first reset element that resets the first amplification element; and a second reset element that resets the second amplification element. The offset element is a capacitor. A charge is accumulated in the offset element via a feedback loop of an output from the second amplification element, and an offset bias is generated. The present technology can be applied to an imaging element.
    Type: Application
    Filed: July 14, 2017
    Publication date: July 18, 2019
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Toshiyuki NISHIHARA, Tomohiro TAKAHASHI, Masao MATSUMURA, Tsutomu IMOTO
  • Publication number: 20190154850
    Abstract: The present disclosure relates to a detection device and electronic equipment, in which a detection accuracy of minute light can be improved. A detection device includes: a pixel array portion in which a plurality of first pixels including a photoelectric conversion unit, and a plurality of second pixels not including a photoelectric conversion unit, are arranged; and a driving unit configured to drive the first pixel and the second pixel. The present technology, for example, can be applied to a light detector, a radiation counter device performing radiation counting by using the light detector, and a biological examination device using the light detector, such as a flow cytometer.
    Type: Application
    Filed: July 7, 2017
    Publication date: May 23, 2019
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Toshiyuki NISHIHARA, Masao MATSUMURA, Tsutomu IMOTO
  • Publication number: 20190094391
    Abstract: The present disclosure relates to an X-ray detection device and a detection method, which can improve a sampling rate and spatial resolution without increasing an exposure dose to a subject. The X-ray detection device according to an aspect of the present disclosure includes: a scintillator adapted to generate scintillation light in response to incident X-rays; a detection unit including a plurality of pixels each generating a pixel signal in response to the scintillation light incident thereon; and an output unit adapted to generate the X-ray two-dimensional projection data by using the pixel signals of the pixels, in which the pixel of the detection unit includes: a plurality of subpixels adapted to perform photoelectric conversion in response to the scintillation light; an AD conversion unit adapted to apply AD conversion to outputs of the subpixels; and an adder adapted to generate the pixel signal corresponding to the pixel by adding up outputs of the plurality of subpixels after the AD conversion.
    Type: Application
    Filed: April 7, 2017
    Publication date: March 28, 2019
    Inventors: TOSHIYUKI NISHIHARA, KENICHI OKUMURA, TSUTOMU IMOTO, MASAO MATSUMURA
  • Publication number: 20170104942
    Abstract: The present disclosure relates to a solid state imaging device, a drive control method therefor, an image processing method, and an electronic apparatus capable of achieving both generation of a pixel signal with a high dynamic range and generation of phase difference information. A pixel array unit of the solid state imaging device is configured such that a plurality of pixels each having the same light receiving region is arranged in a matrix, and light that has entered a single microlens enters the plurality of pixels adjacent to each other. In addition, a first pixel and a second pixel included in the plurality of pixels below the microlens of the pixel array unit are set to have a sensitivity difference. The technique of the present disclosure can be applied to, for example, a solid state imaging device or the like.
    Type: Application
    Filed: March 17, 2015
    Publication date: April 13, 2017
    Inventors: Isao HIROTA, Masao MATSUMURA
  • Publication number: 20060186671
    Abstract: A submerged turbine generator is operated by a working fluid, such as liquid nitrogen, liquefied natural gas, or liquid ethylene, to generate electric power. The submerged turbine generator includes a shaft, a casing, a turbine having a runner fixed to the shaft, a generator having a rotor fixed to the shaft and a stator surrounding the rotor, and bearings for rotatably supporting the shaft. The runner is rotated integrally with the shaft by the pressure of the working fluid introduced into the casing. The shaft includes at least two members.
    Type: Application
    Filed: February 7, 2006
    Publication date: August 24, 2006
    Inventors: Shuichiro Honda, Masao Matsumura
  • Patent number: 5678411
    Abstract: A self-contained liquefied gas supply system has a tank for storing a liquefied gas, a primary pump for delivering the liquefied gas from the tank, a secondary pump for pressurizing the liquefied gas delivered from the primary pump, a vaporizer for vaporizing the liquefied gas discharged from the secondary pump into a vaporized gas, an expander for actuating the secondary pump with the vaporized gas produced by the vaporizer, and a back-pressure line connected to an outlet of the expander. A bypass pipe is connected between the primary pump and the vaporizer in bypassing relation to the secondary pump for supplying the liquefied gas from the primary pump to the vaporizer. A joint line is connected between the back-pressure line and a substantially atmospheric pressure line, the joint line having a first flow regulating valve for regulating a rate of flow of a gas from the back-pressure line to the substantially atmospheric pressure line.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: October 21, 1997
    Assignee: Ebara Corporation
    Inventors: Masao Matsumura, Takao Takeuchi, Tadahiko Kishikawa
  • Patent number: 5649425
    Abstract: A turboexpander pump unit has a vertical or horizontal shaft, a pump connected to an end of the shaft for pressurizing a liquid fluid to a pressure higher than a predetermined delivery pressure, a heat exchanger for heating and converting the liquid fluid pressurized by the pump into a high-pressure gas, and an expander turbine connected to an opposite end of the shaft and actuatable by a thermal energy reduction produced when the high-pressure gas from the heat exchanger is lowered to the predetermined delivery pressure, for delivering the liquid fluid continuously under a predetermined pressure to an external installation. The pump having at least two outlet ports for discharging the liquid fluid at respective different pressures. One of the two outlet ports is connected to the heat exchanger, and the other to a liquid delivery line.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: July 22, 1997
    Assignee: Ebara Corporation
    Inventors: Masao Matsumura, Takao Takeuchi, Seigo Katsuta