Patents by Inventor Masashi IWASHIMIZU

Masashi IWASHIMIZU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802990
    Abstract: An optical system that obtains characteristics of a transmission path in atmosphere, when laser light propagates through this transmission path, at a place separated from this transmission path and before the propagation, and corrects wavefront of the laser light based on the obtained characteristics, is provided. The optical system is provided with an irradiation device and an atmospheric characteristics obtaining system. The irradiation device irradiates an external target with light via a first optical path. The atmospheric characteristics obtaining system is arranged in a second optical path separated from the first optical path and obtains characteristics of atmospheric environment in the first optical path with respect to the irradiated light. The irradiation device is provided with wavefront correction optics. The wavefront correction optics correct wavefront of the irradiated light based on the obtained characteristics.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 31, 2023
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., RIKEN, INSTITUTE FOR LASER TECHNOLOGY
    Inventors: Masashi Iwashimizu, Hiroyuki Daigo, Shingo Nishikata, Kazunori Masukawa, Atsushi Ochiai, Toshikazu Ebisuzaki, Satoshi Wada, Yoshiyuki Takizawa, Masayuki Maruyama, Shinji Motokoshi
  • Patent number: 11387618
    Abstract: A laser beam irradiation apparatus including: a plurality of laser light sources emitting first laser beams; and a light-condensing optics system having an incident face on which the first laser beams are made incident and performing an optical operation on the first laser beams to emit second laser beams. The plurality of laser light sources are configured to emit the first laser beams so that beam diameters are expanded towards the incident face. Each first laser beam overlaps at least one of the other laser beams on the incident face. The light-condensing optics system is configured so that beam diameters of second laser beams emitted from the light-condensing optics system are minimal on a target face, and a distance between a center of each second laser beam and the optical axis on the target face is smaller than a beam radius of each second laser beam on the target face.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 12, 2022
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., RIKEN
    Inventors: Masashi Iwashimizu, Hiroyuki Daigo, Shingo Nishikata, Kazunori Masukawa, Atsushi Ochiai, Toshikazu Ebisuzaki, Satoshi Wada, Yoshiyuki Takizawa
  • Patent number: 11163150
    Abstract: A driving optical system is used to observe a disturbance of a wavefront of reference light received from a target and generate a wavefront in a conjugate relationship with the wavefront. A plurality of control signals are generated on a basis of a plurality of Zernike coefficients calculated as a Zernike polynomial which approximates the wavefront disturbance in order to respectively drive a plurality of deformable mirrors included in the driving optical system. An adaptive optical system is provided which can optically compensate a wavefront disturbance derived from an atmospheric fluctuation even in a case of radiating laser light to a target moving at a high speed.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: November 2, 2021
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., RIKEN
    Inventors: Masashi Iwashimizu, Hiroyuki Daigo, Shingo Nishikata, Kazunori Masukawa, Atsushi Ochiai, Toshikazu Ebisuzaki, Satoshi Wada, Yoshiyuki Takizawa
  • Publication number: 20210318534
    Abstract: An optical correction is predictively performed based on a result of AI learning previously performed by use of learning data including measurement data. The optical compensation system is provided with wavefront correction optics, a sensor and a controller. The wavefront correction optics corrects a wavefront of light that passes through a given optical path. The sensor obtains environmental information in the optical path. The controller calculates, based on the environmental information, a predicted wavefront disturbance of the light that has passed through the optical path and controls the wavefront correction optics so as to cancel the predicted wavefront disturbance.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 14, 2021
    Inventors: Masashi IWASHIMIZU, Hiroyuki DAIGO, Shingo NISHIKATA, Kazunori MASUKAWA, Atsushi OCHIAI, Toshikazu EBISUZAKI, Satoshi WADA, Yoshiyuki TAKIZAWA, Masayuki MARUYAMA, Shinji MOTOKOSHI
  • Publication number: 20210311225
    Abstract: An optical system that obtains characteristics of a transmission path in atmosphere, when laser light propagates through this transmission path, at a place separated from this transmission path and before the propagation, and corrects wavefront of the laser light based on the obtained characteristics, is provided. The optical system is provided with an irradiation device and an atmospheric characteristics obtaining system. The irradiation device irradiates an external target with light via a first optical path. The atmospheric characteristics obtaining system is arranged in a second optical path separated from the first optical path and obtains characteristics of atmospheric environment in the first optical path with respect to the irradiated light. The irradiation device is provided with wavefront correction optics. The wavefront correction optics correct wavefront of the irradiated light based on the obtained characteristics.
    Type: Application
    Filed: August 23, 2019
    Publication date: October 7, 2021
    Inventors: Masashi IWASHIMIZU, Hiroyuki DAIGO, Shingo NISHIKATA, Kazunori MASUKAWA, Atsushi OCHIAI, Toshikazu EBISUZAKI, Satoshi WADA, Yoshiyuki TAKIZAWA, Masayuki MARUYAMA, Shinji MOTOKOSHI
  • Publication number: 20210270568
    Abstract: A laser irradiation apparatus is provided with a controller that calculates at least one predicted movement position into which a target is predicted to move at a specific time in future, a transmission laser source that generates a transmission laser, irradiation optics configured to emit the transmission laser to the target and emit search laser to the predicted movement position and wavefront correction optics. The wavefront correction optics are configured to correct a wavefront of the transmission laser at the specific time based on observation light that returns when the search laser is emitted to the predicted movement position.
    Type: Application
    Filed: July 3, 2019
    Publication date: September 2, 2021
    Inventors: Masashi IWASHIMIZU, Hiroyuki DAIGO, Shingo NISHIKATA, Kazunori MASUKAWA, Atsushi OCHIAI, Toshikazu EBISUZAKI, Satoshi WADA, Yoshiyuki TAKIZAWA, Masayuki MARUYAMA, Shinji MOTOKOSHI
  • Publication number: 20200227881
    Abstract: A laser beam irradiation apparatus including: a plurality of laser light sources emitting first laser beams; and a light-condensing optics system having an incident face on which the first laser beams are made incident and performing an optical operation on the first laser beams to emit second laser beams. The plurality of laser light sources are configured to emit the first laser beams so that beam diameters are expanded towards the incident face. Each first laser beam overlaps at least one of the other laser beams on the incident face. The light-condensing optics system is configured so that beam diameters of second laser beams emitted from the light-condensing optics system are minimal on a target face, and a distance between a center of each second laser beam and the optical axis on the target face is smaller than a beam radius of each second laser beam on the target face.
    Type: Application
    Filed: April 25, 2018
    Publication date: July 16, 2020
    Inventors: Masashi IWASHIMIZU, Hiroyuki DAIGO, Shingo NISHIKATA, Kazunori MASUKAWA, Atsushi OCHIAI, Toshikazu EBISUZAKI, Satoshi WADA, Yoshiyuki TAKIZAWA
  • Publication number: 20200209610
    Abstract: Observing a disturbance of a wavefront of reference light received from a target and generating a wavefront in a conjugate relationship with the wavefront by use of a driving optical system. Generating a plurality of control signals on a basis of a plurality of Zernike coefficients calculated as a Zernike polynomial which approximates the wavefront disturbance in order to respectively drive a plurality of deformable mirrors included in the driving optical system. Providing an adaptive optical system which can optically compensate a wavefront disturbance derived from an atmospheric fluctuation even in a case of radiating laser light to a target moving at a high speed.
    Type: Application
    Filed: April 25, 2018
    Publication date: July 2, 2020
    Inventors: Masashi IWASHIMIZU, Hiroyuki DAIGO, Shingo NISHIKATA, Kazunori MASUKAWA, Atsushi OCHIAI, Toshikazu EBISUZAKI, Satoshi WADA, Yoshiyuki TAKIZAWA