Patents by Inventor Masashi Muraoka

Masashi Muraoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040208
    Abstract: A catalyst layer for a fuel cell membrane electrode assembly includes a plurality of agglomerates, adjacent ones of the plurality of agglomerates contacting with each other with pores provided between said adjacent ones of the plurality of agglomerates, each of the plurality of agglomerates being formed by packing a plurality of catalysts each consisting of noble metal fine particles supported on a fiber-like support material, adjacent ones of the plurality of catalysts contacting with each other with pores provided between said adjacent ones of the plurality of catalysts, and each of the plurality of catalysts contacting with a plurality of catalysts other than said each catalyst at a plurality of contact points. This allows providing a catalyst layer, a fuel cell membrane electrode assembly, and a fuel cell, each of which has compact size and excellent power generation performance, and a method for producing the same.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: May 26, 2015
    Assignees: OneD Material LLC, Sharp Kabushiki Kaisha
    Inventors: Masashi Muraoka, Kohtaroh Saitoh, Hirotaka Mizuhata, Takenori Onishi, Yimin Zhu, Ionel C. Stefan, Baixin Qian, Jay Goldman
  • Patent number: 8968966
    Abstract: Provided is a fuel battery including: a fuel battery cell assembly having at least two fuel battery cells coplanarly disposed, the fuel battery cell including a membrane electrode assembly having an anode, an electrolytic membrane, and a cathode stacked on one another in this order, and a flow channel plate provided on an anode side and having on an anode-side surface thereof an in-cell fuel flow channel through which liquid fuel flows; and a fuel distributor having an out-cell fuel flow channel connected to each of the in-cell fuel flow channels to distribute the liquid fuel to the fuel battery cells.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takenori Onishi, Tomohisa Yoshie, Hirotaka Mizuhata, Mutsuko Komoda, Shinobu Takenaka, Masashi Muraoka
  • Patent number: 8935070
    Abstract: In one embodiment, a vehicle brake pressure controller includes: a sensor and a control section. The sensor detects a dynamic characteristic quantity of a vehicle, and outputs it as first information. The control section includes: an input section configured to receive the first information; a conversion processing section configured to convert the first information into second information having a standardized format; and a correction processing section configured to correct the second information into third information, depending on the vehicle. Hence, the control section performs a brake pressure control based on the third information.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 13, 2015
    Assignee: Nissin Kogyo Co., Ltd.
    Inventor: Masashi Muraoka
  • Publication number: 20140227621
    Abstract: A fuel cell stack formed by stacking two or more fuel cell layers each constituted of one or more unit cell and a fuel cell system including the same are provided. Any two fuel cell layers adjacent to each other each have one or more gap region. At least a part of the gap region in one fuel cell layer of any two fuel cell layers adjacent to each other is in contact with a unit cell constituting the other fuel cell layer. The gap region in one fuel cell layer and the gap region in the other fuel cell layer communicate with each other. The fuel cell stack is excellent in fuel or oxidizing agent supply performance and it realizes high power density.
    Type: Application
    Filed: February 28, 2014
    Publication date: August 14, 2014
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki FUJITA, Hironori KAMBARA, Masashi MURAOKA, Tomohisa YOSHIE
  • Patent number: 8741500
    Abstract: A fuel cell stack formed by stacking two or more fuel cell layers each constituted of one or more unit cell and a fuel cell system including the same are provided. Any two fuel cell layers adjacent to each other each have one or more gap region. At least a part of the gap region in one fuel cell layer of any two fuel cell layers adjacent to each other is in contact with a unit cell constituting the other fuel cell layer. The gap region in one fuel cell layer and the gap region in the other fuel cell layer communicate with each other. The fuel cell stack is excellent in fuel or oxidizing agent supply performance and it realizes high power density.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Toshiyuki Fujita, Hironori Kambara, Masashi Muraoka, Tomohisa Yoshie
  • Publication number: 20140134509
    Abstract: A direct alcohol fuel cell system including a fuel cell unit having a direct alcohol fuel cell including an anode electrode, an electrolyte membrane, and a cathode electrode in this order, a fuel supply unit for supplying alcohol fuel to the anode electrode, a detecting unit for detecting a current value I of a current flowing between the anode electrode and the cathode electrode of the direct alcohol fuel cell or an output voltage value V of the direct alcohol fuel cell, and a temperature T of the direct alcohol fuel cell, and a control unit for determining a supply quantity Q of alcohol fuel to the anode electrode based on detection results of the current value I or the output voltage value V, and the temperature T and controlling the fuel supply unit so that the supply quantity of the alcohol fuel is adjusted to the supply quantity Q.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 15, 2014
    Applicant: c/o Sharp Kabushiki Kaisha
    Inventors: Hirotaka Mizuhata, Tomohisa Yoshie, Mutsuko Yamamoto, Shinobu Takenaka, Takenori Onishi, Masashi Muraoka
  • Publication number: 20140106243
    Abstract: A fuel cell including a unit cell having an anode, an electrolyte membrane, and a cathode in this order, a liquid fuel accommodation portion composed of a space opening on an anode side and arranged on the anode side, for accommodating or allowing flow of liquid fuel, and a first moisture retention layer arranged between the unit cell and the liquid fuel accommodation portion is provided. This fuel cell may further include a second moisture retention layer arranged on the cathode. This fuel cell can be a direct alcohol fuel cell. For example, pure methanol or a methanol aqueous solution is adopted as the liquid fuel.
    Type: Application
    Filed: May 23, 2012
    Publication date: April 17, 2014
    Applicant: C/O SHARP KABUSHIKI KAISHA
    Inventors: Shinobu Takenaka, Mutsuko Komoda, Tomohisa Yoshie, Hirotaka Mizuhata, Takenori Onishi, Masashi Muraoka
  • Publication number: 20130261905
    Abstract: In one embodiment, a vehicle brake pressure controller includes: a sensor and a control section. The sensor detects a dynamic characteristic quantity of a vehicle, and outputs it as first information. The control section includes: an input section configured to receive the first information; a conversion processing section configured to convert the first information into second information having a standardized format; and a correction processing section configured to correct the second information into third information, depending on the vehicle. Hence, the control section performs a brake pressure control based on the third information.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Applicant: NISSIN KOGYO CO., LTD.
    Inventor: Masashi MURAOKA
  • Publication number: 20130034793
    Abstract: Provided is a fuel battery including: a fuel battery cell assembly having at least two fuel battery cells coplanarly disposed, the fuel battery cell including a membrane electrode assembly having an anode, an electrolytic membrane, and a cathode stacked on one another in this order, and a flow channel plate provided on an anode side and having on an anode-side surface thereof an in-cell fuel flow channel through which liquid fuel flows; and a fuel distributor having an out-cell fuel flow channel connected to each of the in-cell fuel flow channels to distribute the liquid fuel to the fuel battery cells.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 7, 2013
    Inventors: Takenori ONISHI, Tomohisa YOSHIE, Hirotaka MIZUHATA, Mutsuko KOMODA, Shinobu TAKENAKA, Masashi MURAOKA
  • Publication number: 20130029242
    Abstract: A membrane electrode assembly having a temperature responsive layer whose material permeability is reduced with temperature rise, on a laminate including an anode catalyst layer, an electrolyte membrane and a cathode catalyst layer in this order, and a fuel cell using the same are provided. The temperature responsive layer may be composed of a porous layer containing a temperature responsive material whose moisture content changes at a phase transition temperature. It is possible to repress increase in fuel supply amount to the anode catalyst layer in association with temperature rise, and moisture evaporation from the electrolyte membrane in association with temperature rise, and to prevent excessive temperature rise and thermal runaway of the fuel cell.
    Type: Application
    Filed: February 3, 2011
    Publication date: January 31, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Hirotaka Mizuhata, Tomohisa Yoshie, Shinobu Takenaka, Takenori Onishi, Masashi Muraoka
  • Publication number: 20120034541
    Abstract: Provided is a fuel cell stack having reduced thickness and weight and an improved output density. The fuel cell stack according to the present invention includes two or more stacked fuel cell layers, and is characterized in that at least one of the fuel cell layers is formed by arranging two or more composite unit cells in an identical plane with a gap provided therebetween, that the composite unit cell includes a plurality of unit cells and a fuel supply portion for supplying fuel to anode electrodes of the unit cells, and that the anode electrodes of the plurality of unit cells are arranged to face the fuel supply portion.
    Type: Application
    Filed: March 31, 2010
    Publication date: February 9, 2012
    Inventors: Masashi Muraoka, Toshiyuki Fujita, Tomohisa Yoshie, Hironori Kambara
  • Publication number: 20110275005
    Abstract: The present invention relates to interfacial layers for use m membrane electrode assemblies that comprise nanowire-supported catalysts, and fuel cells comprising such membrane electrode assemblies. The present invention also relates to methods of preparing membrane electrode assemblies and fuel cells comprising interfacial layers and nanowire-supported catalysts.
    Type: Application
    Filed: October 22, 2009
    Publication date: November 10, 2011
    Applicant: Nanosys, Inc
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan, Masashi Muraoka, Takenori Onishi, Kohtaroh Saitoh, Hirotaka Mizuhata
  • Publication number: 20110008707
    Abstract: A catalyst layer for a fuel cell membrane electrode assembly includes a plurality of agglomerates, adjacent ones of the plurality of agglomerates contacting with each other with pores provided between said adjacent ones of the plurality of agglomerates, each of the plurality of agglomerates being formed by packing a plurality of catalysts each consisting of noble metal fine particles supported on a fiber-like support material, adjacent ones of the plurality of catalysts contacting with each other with pores provided between said adjacent ones of the plurality of catalysts, and each of the plurality of catalysts contacting with a plurality of catalysts other than said each catalyst at a plurality of contact points. This allows providing a catalyst layer, a fuel cell membrane electrode assembly, and a fuel cell, each of which has compact size and excellent power generation performance, and a method for producing the same.
    Type: Application
    Filed: May 3, 2010
    Publication date: January 13, 2011
    Applicants: NANOSYS, Inc., Sharp Kabushiki Kaisha
    Inventors: Masashi MURAOKA, Kohtaroh Saitoh, Hirotaka Mizuhata, Takenori Onishi, Yimin Zhu, Ionel C. Stefan, Baixin Qian, Jay L. Goldman
  • Publication number: 20100221633
    Abstract: A fuel cell stack formed by stacking two or more fuel cell layers each constituted of one or more unit cell and a fuel cell system including the same are provided. Any two fuel cell layers adjacent to each other each have one or more gap region. At least a part of the gap region in one fuel cell layer of any two fuel cell layers adjacent to each other is in contact with a unit cell constituting the other fuel cell layer. The gap region in one fuel cell layer and the gap region in the other fuel cell layer communicate with each other. The fuel cell stack is excellent in fuel or oxidizing agent supply performance and it realizes high power density.
    Type: Application
    Filed: July 30, 2008
    Publication date: September 2, 2010
    Inventors: Toshiyuki Fujita, Hironori Kambara, Masashi Muraoka, Tomohisa Yoshie