Patents by Inventor Masataka Yahagi

Masataka Yahagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230154851
    Abstract: Provided is a semiconductor device, which has a wiring structure including a single-layer diffusion barrier layer having both a diffusion barrier function and a liner function. The semiconductor device has a wiring structure including an insulating layer, a conductive wiring, and a diffusion barrier layer disposed between the insulating layer and the conductive wiring in a manner of being in contact with both the insulating layer and the conductive wiring. The diffusion barrier layer is made of an alloy having an amorphous structure containing a first metal and a second element in an amount of 90% by mass or more in total. The first metal is any one selected from Co, Ru, and Mo. The second element is one or two or more selected from Zr, Al, and Nb when the first metal is Co, the second element is Zr when the first metal is Ru, and the second element is one or two selected from Y and B when the first metal is Mo.
    Type: Application
    Filed: June 4, 2020
    Publication date: May 18, 2023
    Applicant: Tohoku University
    Inventors: Junichi KOIKE, Masataka YAHAGI, Yuki YAMADA
  • Patent number: 11651790
    Abstract: A thin film is provided that primarily comprises titanium oxide and includes Ti, Ag and O. The thin film contains 29.6 at % or more and 34.0 at % or less of Ti, 0.003 at % or more and 7.4 at % or less of Ag, and oxygen as the remainder thereof and has a ratio of oxygen to metals, O/(2Ti+0.5Ag), of 0.97 or more. The thin film has a high refractive index and a low extinction coefficient. In addition, the thin film has superior transmittance, minimally deteriorates in reflectance, and is useful as an interference film or a protective film for an optical information recording medium. The film may also be applied to a glass substrate to provide a heat reflective film, an antireflective film, or an interference filter. A method of producing the thin film is also disclosed.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: May 16, 2023
    Assignee: JX NIPPON MINING & METALS CORPORATION
    Inventors: Hideo Takami, Masataka Yahagi
  • Publication number: 20210237153
    Abstract: A sintered compact target containing an element(s) (A) and an element(s) (B) as defined below is provided. The sintered compact target is free from pores having an average diameter of 1 ?m or more, and the number of micropores having an average diameter of less than 1 ?m existing in 40000 ?m2 of the target surface is 100 micropores or less. The element(s) (A) is one or more chalcogenide elements selected from S, Se, and Te, and the element(s) (B) is one or more Vb group elements selected from Bi, Sb, As, P, and N. The provided technology is able to eliminate the source of grain dropping or generation of nodules in the target during sputtering, and additionally inhibit the generation of particles.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 5, 2021
    Inventors: Hideaki FUKUYO, Masataka YAHAGI, Yasuhiro YAMAKOSHI, Hideyuki TAKAHASHI
  • Publication number: 20210174831
    Abstract: A thin film is provided that primarily comprises titanium oxide and includes Ti, Ag and O. The thin film contains 29.6 at % or more and 34.0 at % or less of Ti, 0.003 at % or more and 7.4 at % or less of Ag, and oxygen as the remainder thereof and has a ratio of oxygen to metals, O/(2Ti+0.5Ag), of 0.97 or more. The thin film has a high refractive index and a low extinction coefficient. In addition, the thin film has superior transmittance, minimally deteriorates in reflectance, and is useful as an interference film or a protective film for an optical information recording medium. The film may also be applied to a glass substrate to provide a heat reflective film, an antireflective film, or an interference filter. A method of producing the thin film is also disclosed.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Hideo Takami, Masataka Yahagi
  • Publication number: 20180085828
    Abstract: A sintered compact target containing an element(s) (A) and an element(s) (B) as defined below is provided. The sintered compact target is free from pores having an average diameter of 1 ?m or more, and the number of micropores having an average diameter of less than 1 ?m existing in 40000 ?m2 of the target surface is 100 micropores or less. The element(s) (A) is one or more chalcogenide elements selected from S, Se, and Te, and the element(s) (B) is one or more Vb group elements selected from Bi, Sb, As, P, and N. The provided technology is able to eliminate the source of grain dropping or generation of nodules in the target during sputtering, and additionally inhibit the generation of particles.
    Type: Application
    Filed: December 1, 2017
    Publication date: March 29, 2018
    Inventors: Hideaki Fukuyo, Masataka Yahagi, Yasuhiro Yamakoshi, Hideyuki Takahashi
  • Patent number: 9663405
    Abstract: An oxide sintered compact made of indium (In), gallium (Ga), zinc (Zn) and oxygen (O) and represented by a formula of InxGayZnzOa [wherein x/(x+y) is 0.2 to 0.8, z/(x+y+z) is 0.1 to 0.5, and a=(3/2)x+(3/2)y+z], wherein the concentration of volatile impurities contained in the oxide sintered compact is 20 ppm or less. Provided is technology for application to the production of an IGZO target capable of achieving high densification and low bulk resistance of the sputtering target, preventing swelling and cracks of the target during the production process, minimizing the generation of nodules, inhibiting abnormal discharge, and enabling DC sputtering.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 30, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno, Hideo Takami
  • Publication number: 20150162045
    Abstract: A thin film is provided that primarily comprises titanium oxide and includes Ti, Ag and O. The thin film contains 29.6 at % or more and 34.0 at % or less of Ti, 0.003 at % or more and 7.4 at % or less of Ag, and oxygen as the remainder thereof and has a ratio of oxygen to metals, O/(2Ti+0.5Ag), of 0.97 or more. The thin film has a high refractive index and a low extinction coefficient. In addition, the thin film has superior transmittance, minimally deteriorates in reflectance, and is useful as an interference film or a protective film for an optical information recording medium. The film may also be applied to a glass substrate to provide a heat reflective film, an antireflective film, or an interference filter. A method of producing the thin film is also disclosed.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 11, 2015
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 9028726
    Abstract: The present invention provides a sputtering target suitable for producing an amorphous transparent conductive film which can be formed without heating a substrate and without feeding water during the sputtering; which is easily crystallized by low-temperature annealing; and which has low resistivity after the crystallization. An oxide sintered compact containing an indium oxide as a main component, while containing tin as a first additive element, and one or more elements selected from germanium, nickel, manganese, and aluminum as a second additive element, with the content of tin which is the first additive element being 2-15 atom % relative to the total content of indium and tin, and the total content of the second additive element being 0.1-2 atom % relative to the total content of indium, tin and the second additive element.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 12, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi
  • Patent number: 8882975
    Abstract: Provided is an Sb—Te base alloy sinter sputtering target having Sb and Te as its primary component and comprising a structure in which Sb—Te base alloy particles are surrounded by fine carbon or boron particles; wherein, if the mean diameter of the Sb—Te base alloy particles is X and the particle size of carbon or boron is Y, Y/X is within the range of 1/10 to 1/10000. The present invention seeks to improve the Sb—Te base alloy sputtering target structure, inhibit the generation of cracks in the sintered target, and prevent the generation of arcing during the sputtering process.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: November 11, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masataka Yahagi, Hideyuki Takahashi, Hirohisa Ajima
  • Patent number: 8877021
    Abstract: Provided is chromic oxide powder for a sputtering target comprised of chromic oxide wherein sulfur is 100 wtppm or less. This sputtering target contains chromic oxide of 5 molar % or higher or chromic oxide, wherein the sulfur content in the sputtering target is 100 wtppm or less, and the purity excluding gas components of moisture, carbon, nitrogen and sulfur is 99.95 wt % or higher. The chromic oxide powder for a sputtering target is able to increase the purity of the chromic oxide itself as well as increase the sintered density upon manufacturing a sputtering target. As a result of manufacturing a sputtering target using this chromic oxide powder, the crystal grains are refined, and provided is a uniform and dense sputtering target that does not generate cracks.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: November 4, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 8758497
    Abstract: Provided is a sputtering target of sintered Ti—Nb based oxide, wherein the sputtering target consists of titanium (Ti), niobium (Nb), and remainder being oxygen and unavoidable impurities, and the atomic ratio of Ti and Nb is 0.39?(Nb/(Ti+Nb))?0.79. The sputtering target of sintered Ti—Nb based oxide has a high refractive index and a low extinction coefficient. Also provided is a thin film of Ti—Nb based oxide obtained by using the foregoing target, which enables high-rate deposition. The thin film has superior transmittance, is subject to minimal reduction and variation of reflectivity, and is useful as an interference film or a protective film of an optical information recording medium, or as a part of a constituent layer of an optical recording medium. The thin film can also be applied to a glass substrate; that is, it can be used as a heat reflecting film, an antireflection film, or an interference filter.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 24, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 8728358
    Abstract: An amorphous film comprising indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen, is provided. The film can be crystallized by annealing at 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. In this manner, an ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film can be crystallized by annealing at a low temperature and will have low resistivity. Methods of producing such films and sintered compacts are provided.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 20, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 8663439
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 4, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Patent number: 8652399
    Abstract: A sputtering target for producing a metallic glass membrane characterized in comprising a structure obtained by sintering atomized powder having a composition of a ternary compound system or greater with at least one or more metal elements selected from Pd, Zr, Fe, Co, Cu and Ni as its main component (component of greatest atomic %), and being an average grain size of 50 ?m or less. The prepared metallic glass membrane can be used as a substitute for conventional high-cost bulk metallic glass obtained by quenching of molten metal. This sputtering target for producing the metallic glass membrane is also free from problems such as defects in the metallic glass membrane and unevenness of composition, has a uniform structure, can be produced efficiently and at low cost, and does not generate many nodules or particles. Further provided is a method for manufacturing such a sputtering target for forming the metallic glass membrane.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: February 18, 2014
    Assignees: JX Nippon Mining & Metals Corporation, Tohoku University
    Inventors: Atsushi Nakamura, Masataka Yahagi, Akihisa Inoue, Hisamichi Kimura, Shin-ichi Yamaura
  • Publication number: 20140023868
    Abstract: A sputtering target of sintered Ti—Nb based oxide is provided. The sputtering target consists of titanium (Ti), niobium (Nb), and remainder being oxygen and unavoidable impurities, and the atomic ratio of Ti and Nb is 0.39?(Nb/(Ti+Nb))?0.79. The sputtering target of sintered Ti—Nb based oxide has a high refractive index and a low extinction coefficient. Also provided is a thin film of Ti—Nb based oxide obtained by using the foregoing target, which enables high-rate deposition. The thin film has superior transmittance, is subject to minimal reduction and variation of reflectivity, and is useful as an interference or protective film of an optical information recording medium, or as a part of a constituent layer of an optical recording medium. The thin film can also be applied to a glass substrate; that is, it can be used as a heat reflecting or antireflection film, or an interference filter.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: JX Nippon Mining & Metals Corporation
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 8501052
    Abstract: A thin film comprising titanium oxide as its main component, wherein the thin film includes titanium, oxygen and copper, content of Ti is 29.0 at % or higher and 34.0 at % or less and content of Cu is 0.003 at % or higher and 7.7 at % or less with remainder being oxygen and unavoidable impurities, and ratio of oxygen component to metal components, O/(2Ti+0.5Cu), is 0.96 or higher.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: August 6, 2013
    Assignee: JX Nippon Mining & Metals Corporatoin
    Inventors: Hideo Takami, Masataka Yahagi
  • Patent number: 8430978
    Abstract: A sintered sputtering target having a structure where the average crystallize size is 1 nm to 50 nm and preferably comprises an alloy having a three-component system or greater containing, as its primary component, at least one element selected from among Zr, Pd, Cu, Co, Fe, Ti, Mg, Sr, Y, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te and a rare earth metal. This target is manufactured by sintering atomized powder. Thereby provided is a high density target having an extremely fine and uniform structure manufactured with the sintering method, in place of a conventional bulk metal glass produced by the quenching of a molten metal, which has a coarse crystal structure and requires a high cost for its production.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: April 30, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihisa Inoue, Hisamichi Kimura, Kenichiro Sasamori, Masataka Yahagi, Atsushi Nakamura, Hideyuki Takahashi
  • Publication number: 20120319057
    Abstract: An amorphous film comprising indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen, is provided. The film can be crystallized by annealing at 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. In this manner, an ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film can be crystallized by annealing at a low temperature and will have low resistivity. Methods of producing such films and sintered compacts are provided.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 20, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 8277694
    Abstract: Provided is an amorphous film substantially comprised of indium, tin, calcium and oxygen, wherein tin is contained at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Ca) and calcium is contained at a ratio of 0.1 to 2.0% based on an atomicity ratio of Ca/(In+Sn+Ca), and remnant is indium and oxygen. The film can be further crystallized by annealing at a temperature of 260° C. or lower in which resistivity of the film will be 0.4 m?cm or less. An ITO thin film for use as a display electrode or the like in a flat panel display can be made into an amorphous ITO film by way of sputter deposition without heating the substrate or adding water during deposition. This ITO film is characterized in that it will crystallize by annealing at a temperature of 260° C. or less, which is not such a high temperature, and have low resistivity after being crystallized. Thus, the present invention aims to provide a method of producing such a film and a sintered compact for producing such a film.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: October 2, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno
  • Patent number: 8252206
    Abstract: Provided is an amorphous film comprised substantially of indium, tin, magnesium and oxygen, and containing tin at a ratio of 5 to 15% based on an atomicity ratio of Sn/(In+Sn+Mg) and magnesium at a ratio of 0.1 to 2.0% based on an atomicity ratio of Mg/(In+Sn+Mg) with remnant being indium and oxygen, and having a film resistivity of 0.4 m?cm or less as a result of crystallizing the film by annealing the film at a temperature of 260° C. or lower. An amorphous ITO thin film for use as a display electrode and the like in flat panel displays is obtained by way of sputter deposition without heating the substrate and without the need of adding water during the deposition. This amorphous ITO film has the property of being crystallized by annealing at 260° C. or lower, which is not such a high temperature, and having low resistivity after crystallization. Also provided are a method of producing the film and a sintered compact for producing the film.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: August 28, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Masakatsu Ikisawa, Masataka Yahagi, Kozo Osada, Takashi Kakeno