Patents by Inventor Masato Hashimoto

Masato Hashimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160107853
    Abstract: Provided are a floating restricting member restricting the floating position of a bundle of sheets; and a holding mechanism holding the floating restricting member relative to a side fence. The floating restricting member includes a sheet contact section being brought into contact with the sheets from above; and a sheet-floating restricting section restricting the floating position of the floating sheet that is floated while air is blown thereto. The holding mechanism sets the floating restricting member in the initial state where the sheet-floating restricting section restricts the floating position of the sheet, in the sheet-placing time retracted state where the sheets are pushed against the sheet contact section so that the floating restricting member is retracted, and in the sheet-ejecting time retracted state where, when the sheets are to be removed, the sheet is pushed against the sheet contact section from below so that the floating restricting member is retracted.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 21, 2016
    Applicant: RICOH COMPANY, LIMITED
    Inventors: Masato HASHIMOTO, Takashi FUKUMOTO, Hideaki TAKAHASHI, Hisayoshi SUGAWARA, Munehisa FUDA, Yasuo NIIKURA, Masaki ISHIZAKI, Kiyotake NAKAMURA, Hidetoshi KOJIMA, Toshihiro OKUTSU, Kazunori KONNO, Tatsuya SUGAWARA, Kohjiroh HAGA
  • Patent number: 9076742
    Abstract: A far-infrared plane heater 6 is placed in a closed-container-shaped device body 3 of an oxidation annealing device 1, an oxygen addition gas feed pipe 8 through which an oxygen addition gas containing water vapor and oxygen is fed into the device body 3 is connected to a gas exhaust pipe 11 through which gas in the device body 3 is discharged, and jet nozzles 16 through which the oxygen addition gas containing water vapor and oxygen is ejected to an oxygen-deficient portion of a substrate 50 are brought into communication with the oxygen addition gas feed pipe 8. This allows oxidation annealing of a large substrate at high throughput and low cost while preventing a leakage current.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 7, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ota, Masato Hashimoto
  • Publication number: 20150166280
    Abstract: A sheet feeding device includes: a sheet stacking member; an air blowing unit configured to blow air onto the sheet bundle placed on the sheet stacking member to suspend multiple sheets of the sheet bundle; a lifting/lowering unit configured to lift/lower the sheet stacking member; an optical reflection sensor configured to detect a suspended sheet suspended by the air blowing unit; and a control unit configured to control the lifting/lowering unit based on an output value of the optical reflection sensor. The optical reflection sensor is configured to be capable of detecting an area corresponding to multiple sheets in a sheet suspension zone extending between a non-suspended sheet bundle and a conveying member configured to convey an uppermost sheet of the multiple suspended sheets. The non-suspended sheet bundle is made up of sheets not suspended during a period when air is blown by the air blowing unit.
    Type: Application
    Filed: December 11, 2014
    Publication date: June 18, 2015
    Applicant: RICOH COMPANY, LIMITED
    Inventors: Yasunori HINO, Chikara AKATA, Tomoki TAMATE, Hideaki TAKAHASHI, Munehisa FUDA, Toshihiro OKUTSU, Takashi FUKUMOTO, Yasuo NIIKURA, Masaki ISHIZAKI, Kiyotake NAKAMURA, Hidetoshi KOJIMA, Hisayoshi SUGAWARA, Kazunori KONNO, Tatsuya SUGAWARA, Kohjiroh HAGA, Masato HASHIMOTO
  • Publication number: 20130280925
    Abstract: A far-infrared plane heater 6 is placed in a closed-container-shaped device body 3 of an oxidation annealing device 1, an oxygen addition gas feed pipe 8 through which an oxygen addition gas containing water vapor and oxygen is fed into the device body 3 is connected to a gas exhaust pipe 11 through which gas in the device body 3 is discharged, and jet nozzles 16 through which the oxygen addition gas containing water vapor and oxygen is ejected to an oxygen-deficient portion of a substrate 50 are brought into communication with the oxygen addition gas feed pipe 8. This allows oxidation annealing of a large substrate at high throughput and low cost while preventing a leakage current.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 24, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yoshifumi Ota, Masato Hashimoto
  • Patent number: 8247273
    Abstract: A semiconductor device includes at least one thin-film transistor 116, which includes: a crystalline semiconductor layer 120 including a region 110 to be a channel region and source and drain regions 113; a gate electrode 107 for controlling the conductivity of the region 110 to be a channel region; a gate insulating film 106 arranged between the semiconductor layer 120 and the gate electrode 107; and source and drain electrodes 115 connected to the source and drain regions 113, respectively. At least one of the source and drain regions 113 contains an element to be a donor or an acceptor and a rare-gas element, but the region 110 to be a channel region does not contain the rare-gas element. The atomic weight of the rare-gas element is greater than that of the element to be a donor or an acceptor. The concentration of the rare-gas element in the at least one region as measured in the thickness direction thereof decreases continuously from the upper surface of the at least one region toward its lower surface.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: August 21, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoki Makita, Masato Hashimoto
  • Publication number: 20120133092
    Abstract: A sheet feeding device includes: a sheet storage unit that stores a sheet stack of a plurality of sheets; and a plurality of nozzles configured to generate air currents blown out to the sheet stack, the air currents separate an uppermost sheet from the rest of stack of the plurality of sheets including a next sheet, the next sheet being situated immediately below the uppermost sheet.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 31, 2012
    Applicant: RICOH COMPANY, LIMITED
    Inventors: Munehisa Fuda, Masato Hashimoto
  • Publication number: 20100181575
    Abstract: A semiconductor device includes at least one thin-film transistor 116, which includes: a crystalline semiconductor layer 120 including a region 110 to be a channel region and source and drain regions 113; a gate electrode 107 for controlling the conductivity of the region 110 to be a channel region; a gate insulating film 106 arranged between the semiconductor layer 120 and the gate electrode 107; and source and drain electrodes 115 connected to the source and drain regions 113, respectively. At least one of the source and drain regions 113 contains an element to be a donor or an acceptor and a rare-gas element, but the region 110 to be a channel region does not contain the rare-gas element. The atomic weight of the rare-gas element is greater than that of the element to be a donor or an acceptor. The concentration of the rare-gas element in the at least one region as measured in the thickness direction thereof decreases continuously from the upper surface of the at least one region toward its lower surface.
    Type: Application
    Filed: June 5, 2008
    Publication date: July 22, 2010
    Inventors: Naoki Makita, Masato Hashimoto
  • Patent number: 7642680
    Abstract: A rotary electrical machine comprises: a stator core; a rotor core arranged at the inner periphery of this stator core; a bracket connected with one end of the stator core; a first bearing arranged by means of the bracket; a frame and a housing connected with the other end of the stator core; a second bearing arranged by means of the housing; a ventilation fan provided between the rotor core and the first bearing, with vanes provided on the outside in the axial direction; a rotor shaft that is freely rotatably supported by the first bearing and second bearing; an inlet provided in the frame or the housing; and an outlet provided in the frame or the housing.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: January 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Nagayama, Masato Hashimoto, Koji Okada
  • Patent number: 7334318
    Abstract: A method of manufacturing an inexpensive fine resistor which do not require dimensional classifications of discrete substrates is disclosed. The method eliminates a process of replacing a mask according to a dimensional ranking of each discrete substrate. The method includes: dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; forming a top electrode layer on a top face of the discrete substrate; forming a resistor layer such that a part of the resistor layer overlaps the top electrode layer; forming protective layers so as to cover the resistor layer; and forming side electrode layer on a side face of the discrete substrate such that the side electrode layer is electrically coupled to the top electrode layer.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: February 26, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Publication number: 20080011185
    Abstract: To provide an electric rolling stock driving apparatus allowing for an enhanced reliability of rolling stock system, a main motor 14 for driving an electric rolling stock, a VVVF inverter 13 for driving the main motor, and a brake controller 12 for controlling braking forces of wheels 16 are provided within a driving truck 9, allowing for an improvement in reliability of a rolling stock system that otherwise might have deficiencies such as an increased rolling stock manufacture term or an increased trouble restoration time by a complicated implementation of wiring due to an arrangement according to a relevant art in which, for driving a rolling stock, associated apparatuses are separately mounted to a car body and a truck.
    Type: Application
    Filed: June 7, 2007
    Publication date: January 17, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazuaki Yuuki, Yosuke Nakazawa, Masato Hashimoto, Shinichi Noda, Kenzo Tonoki, Taihei Koyama, Atsuhiko Nishio, Masaki Miyairi
  • Patent number: 7188404
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: March 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Patent number: 7165315
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: January 23, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Patent number: 7161459
    Abstract: In chip electronic components, the application state of conductive paste that makes side electrodes can be optically distinguished in the production of small-sized chip electronic components. The chip electronic component comprises a substrate, and side electrodes disposed at the end portions of the substrate. The lightness of an entire surface of the side electrode is not more than 6 as defined in JIS-Z8721.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: January 9, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuru Harada, Kazunori Omoya, Masato Hashimoto, Akio Fukuoka
  • Publication number: 20060261687
    Abstract: A rotary electrical machine comprises: a stator core; a rotor core arranged at the inner periphery of this stator core; a bracket connected with one end of the stator core; a first bearing arranged by means of the bracket; a frame and a housing connected with the other end of the stator core; a second bearing arranged by means of the housing; a ventilation fan provided between the rotor core and the first bearing, with vanes provided on the outside in the axial direction; a rotor shaft that is freely rotatably supported by the first bearing and second bearing; an inlet provided in the frame or the housing; and an outlet provided in the frame or the housing.
    Type: Application
    Filed: May 8, 2006
    Publication date: November 23, 2006
    Inventors: Takashi Nagayama, Masato Hashimoto, Koji Okada
  • Patent number: 7084733
    Abstract: In chip electronic components, the application state of conductive paste that makes side electrodes can be optically distinguished in the production of small-sized chip electronic components. The chip electronic component comprises a substrate, and side electrodes disposed at the end portions of the substrate. The lightness of an entire surface of the side electrode is not more than 6 as defined in JIS-Z8721.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: August 1, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuru Harada, Kazunori Omoya, Masato Hashimoto, Akio Fukuoka
  • Patent number: 7057490
    Abstract: A resistor having reliability in electrical connection between an upper surface electrode and a side face electrode, and in bonding strength between a first thin film and a second thin film is provided. The resistor includes upper surface electrodes formed on a main surface a substrate and side face electrodes disposed to side faces of the substrate and connected electrically to the pair of upper surface electrodes, respectively. The upper surface electrode includes a first upper surface electrode layer and a bonding layer overlying the first upper surface electrode layer. The side face electrode includes a first thin film disposed to a side face of the substrate, a second thin film composed of copper-base alloy film and connected electrically to the first thin film, a first plating film formed by nickel plating for covering the second thin film, and a second plating film covering the first plating film.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: June 6, 2006
    Assignee: Matsushita Electric Industrial Co. Ltd.
    Inventors: Masato Hashimoto, Akio Fukuoka, Toshiki Matsukawa, Hiroyuki Saikawa, Tsutomu Nakanishi
  • Publication number: 20060055505
    Abstract: In chip electronic components, the application state of conductive paste that makes side electrodes can be optically distinguished in the production of small-sized chip electronic components. The chip electronic component comprises a substrate, and side electrodes disposed at the end portions of the substrate. The lightness of an entire surface of the side electrode is not more than 6 as defined in JIS-Z8721.
    Type: Application
    Filed: September 30, 2005
    Publication date: March 16, 2006
    Inventors: Mitsuru Harada, Kazunori Omoya, Masato Hashimoto, Akio Fukuoka
  • Patent number: 6935016
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Grant
    Filed: January 17, 2001
    Date of Patent: August 30, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Publication number: 20050158960
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Application
    Filed: January 18, 2005
    Publication date: July 21, 2005
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase
  • Publication number: 20050153515
    Abstract: An inexpensive fine resistor which do not require dimensional classifications of discrete substrates, eliminating a process of replacing a mask according to a dimensional ranking of each discrete substrate as in the prior art. The resistor includes discrete substrate made into pieces by dividing an insulated substrate sheet along a first slit dividing portion and a second dividing portion perpendicular to the first dividing portion; top electrode layer formed on a top face of discrete substrate; resistor layer formed such that a part of resistor layer overlaps top electrode layer; protective layers formed so as to cover resistor layer; side electrode layer formed on a side face of discrete substrate such that side electrode layer is electrically coupled to top electrode layer.
    Type: Application
    Filed: January 18, 2005
    Publication date: July 14, 2005
    Inventors: Masato Hashimoto, Yoshiro Morimoto, Akio Fukuoka, Hiroaki Kaito, Hiroyuki Saikawa, Toshiki Matsukawa, Junichi Hayase