Patents by Inventor Masato Hosaka

Masato Hosaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7318974
    Abstract: A polymer electrolyte fuel cell of the present invention includes a hydrogen ion-conductive polymer electrolyte membrane, an anode and a cathode sandwiching the hydrogen ion-conductive polymer electrolyte membrane, an anode-side conductive separator plate having a gas flow channel for supplying a fuel gas to the anode, and a cathode-side conductive separator plate having a gas flow channel for supplying an oxidant gas to the cathode.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: January 15, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideo Ohara, Hiroki Kusakabe, Masayo Sugou, legal representative, Nobuhiro Hase, Shinsuke Takeguchi, Yoshiaki Yamamoto, Toshihiro Matsumoto, Satoru Fujii, Kazuhito Hatoh, Masato Hosaka, Junji Niikura, Kazufumi Nishida, Teruhisa Kanbara, Tatsuto Yamazaki, deceased
  • Patent number: 7223715
    Abstract: A purification catalyst and a gas-purifying apparatus are provided which are capable of sufficiently purifying a gas subject to treatment at low temperatures. The purification catalyst includes ZrO2 having a specific surface area of 50 m2/g or less and a monoclinic crystal system. The gas-purifying apparatus includes the aforementioned purification catalyst as a first purification catalyst, and a second purification catalyst containing Mn as a major component and disposed upstream of the first purification catalyst.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 29, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tetsuo Terashima, Tatsuo Fujita, Motohiro Suzuki, Masato Hosaka
  • Patent number: 7220514
    Abstract: In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: May 22, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Eiichi Yasumoto, Akihiko Yoshida, Makoto Uchida, Hisaaki Gyoten, Kazuhito Hatoh, Yasushi Sugawara, Junji Morita, Teruhisa Kanbara, Yasuo Takebe, Masato Hosaka, Junji Niikura
  • Patent number: 7081317
    Abstract: It is difficult to realize a small fuel cell capable of being installed in mobile device by merely downsizing a conventional fuel cell without changing the configuration. The present invention provides a small fuel cell employing a polymer electrolyte thin film, by using a semiconductor process. A polymer electrolyte thin film fuel cell in accordance with the present invention comprises: a substrate having a plurality of openings; an electrolyte membrane-electrode assembly formed on the substrate so as to cover each of the openings, the assembly comprising a first catalyst electrode layer, a hydrogen ion conductive polymer electrolyte membrane and a second catalyst electrode layer which are formed successively; and fuel and oxidant supply means for supplying a fuel or an oxidant gas to the first catalyst electrode layer through the openings, and an oxidant gas or a fuel to the second catalyst electrode layer.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: July 25, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Satoru Fujii, Kazuhito Hatoh, Masato Hosaka, Kohji Yuasa, Yasutaka Noguchi, Satoshi Shibutani, Aoi Tanaka, Nobuhiko Hojo, Yukihiro Okada
  • Patent number: 6977234
    Abstract: In order to obtain an electrolyte membrane-electrode assembly using a thin electrolyte membrane, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of forming a hydrogen ion-conductive polymer electrolyte membrane on a base material; a treatment step of reducing adhesion force between the base material and the hydrogen ion-conductive polymer electrolyte membrane; a step of separating and removing the base material; and a step of bonding a catalyst layer and a gas diffusion layer onto the hydrogen ion-conductive polymer electrolyte membrane, and, in order to obtain an electrolyte membrane-electrode assembly which has a catalyst without clogging and is excellent in electrode characteristics, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of bonding a hydrogen ion-conductive polymer electrolyte membrane and a catalyst layer via a coating layer; a step of removing the coating layer
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: December 20, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinya Kosako, Masato Hosaka, Makoto Uchida
  • Patent number: 6916575
    Abstract: In a polymer electrolyte fuel cell of the present invention, at least one of electrodes comprises conductive carbon carrying a platinum group metal catalyst, conductive carbon carrying no catalyst metal and a hydrogen ion-conductive polymer electrolyte. The preferable amount of the conductive carbon carrying no catalyst metal is equivalent to 5 to 50 wt % of the conductive carbon carrying the catalyst metal. Incorporation of the conductive carbon carrying no catalyst metal to the catalyst layer enables reduction in potential concentration on part of electron conduction channels in an electrode, whereby an electrode for a polymer electrolyte fuel cell having an excellent life characteristic can be provided.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: July 12, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihiro Hori, Masato Hosaka, Junji Nikura, Kazuhito Hatoh, Teruhisa Kanbara, Takeshi Yonamine, Hiroaki Matsuoka
  • Patent number: 6855178
    Abstract: A method for producing a membrane electrode assembly 1 for solid polymer electrolyte fuel cell, the membrane electrode assembly 1 including a solid polymer electrolyte membrane 2 comprising an ion exchange membrane, a first electrode 3 having a first catalyst layer 31, and a second electrode 4 having a second catalyst layer 41, the first electrode 3 and the second electrode 4 being disposed so as to be opposed to each other via the ion exchange membrane, the method including: applying a coating solution containing a catalyst onto a base film 101 to form a first catalyst layer 31; applying a coating solution containing an ion exchange resin dissolved or dispersed in a liquid onto the first catalyst layer 31 to form an ion exchange membrane; then applying a coating solution containing a catalyst onto the ion exchange membrane to form a second catalyst layer 41; and finally, peeling off the base film 101 from a resulting laminate.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: February 15, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Makoto Uchida, Junji Niikura, Hisaaki Gyoten, Yasuo Takebe, Kazuhito Hatoh, Masato Hosaka, Teruhisa Kanbara, Atsushi Mukoyama, Hiroshi Shimoda, Shinji Kinoshita
  • Patent number: 6840969
    Abstract: An electrolyte membrane-gasket assembly for a fuel cell, including a polymer electrolyte membrane and a gasket, made of a seal material, covering the peripheral portion of the electrolyte membrane, in which the electrolyte membrane has a sequence of a plurality of through-holes in the peripheral portion, and a portion of the gasket covering one surface of the electrolyte membrane and a portion covering the other surface are connected to each other through the through-holes of the electrolyte membrane. This assembly provides a polymer electrolyte fuel cell free from gas cross leakage caused by a detachment of the gasket from the polymer electrolyte membrane. It is preferable to further include catalyst layers carried on both surfaces of the polymer electrolyte membrane, respectively, and protective films covering, respectively, sections spanning from the peripheral portion of each of the catalyst layers to the peripheral portion of the polymer electrolyte membrane.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: January 11, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Patent number: 6818339
    Abstract: The present specification discloses a polymer electrolyte fuel cell characterized in that each of the cathode and the anode comprises catalyst particles, a hydrogen ion-conductive polymer electrode, a conductive porous base material and a water repellent agent, and water repellency of at least one of the cathode and the anode varies in a direction of thickness or in a plane direction. As such, by varying the degree of the water repellency of the cathode and the anode on the basis of a position, an excellent polymer electrolyte fuel cell having a high discharge characteristic or more specifically a high current-voltage characteristic in a high current density range.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: November 16, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yasushi Sugawara, Hisaaki Gyoten, Makoto Uchida, Eiichi Yasumoto, Teruhisa Kanbara, Junji Morita, Yoshihiro Hori, Akihiko Yoshida, Hidenobu Wakita, Hiroki Kusakabe, Masato Hosaka, Osamu Sakai
  • Patent number: 6790552
    Abstract: A polymer electrolyte fuel cell in which neither cross leakage nor outward leakage occurs with the application of low clamping pressures. The polymer electrolyte fuel cell a membrane electrode assembly (MEA) including a polymer electrolyte membrane, a gasket covering the periphery of the electrolyte membrane, and an anode and cathode attached to the electrolyte membrane; and conductive separator plates sandwiching the MEA therebetween. The gasket has seal ribs surrounding each of the manifold apertures, the anode and the cathode, as well as seal ribs formed on both sides of each of gas passages connecting the fuel gas manifold apertures with the anode and gas passages connecting the oxidant gas manifold apertures with the cathode. These seal ribs, except for in the gas passages, are pressed against the separator plates by clamping pressure of the cell stack to form gas sealing sections.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: September 14, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi
  • Publication number: 20040131540
    Abstract: When a hydrogen producing apparatus is stopped, the flow rates of a hydrocarbon-type fuel feedstock, water and an oxygen-containing oxidant gas are decreased respectively. A random decrease of the flow rates, however, invites a rapid increase in the temperature of a catalyst beyond the limit of thermal resistance, resulting in deactivation of the catalyst. Further, this poses a danger, for example, that the residual hydrocarbon-type fuel in the apparatus may be mixed with the oxidant gas after the stopping of the apparatus.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 8, 2004
    Inventors: Yasuhiro Fujii, Masato Hosaka, Takeshi Tomizawa, Kunihiro Ukai, Kiyoshi Taguchi, Toshiyuki Shono, Yutaka Yoshida, Koichiro Kitagawa
  • Publication number: 20040131919
    Abstract: In a polymer electrolyte fuel cell including a hydrogen ion conductive polymer electrolyte membrane; a pair of electrodes composed of catalyst layers sandwiching the hydrogen ion conductive polymer electrolyte membrane between them and gas diffusion layers in contact with the catalyst layers; a conductive separator plate having a gas flow channel for supplying a fuel gas to one of the electrodes; and a conductive separator plate having a gas flow channel for supplying an oxidant gas to the other electrode, in order to bring a hydrogen ion conductive polymer electrolyte and a catalyst metal of the catalyst layers containing the hydrogen ion conductive polymer electrolyte and conductive carbon particles carrying the catalyst metal sufficiently and uniformly into contact with each other, the polymer electrolyte is provided in pores of an agglomerate structure of the conductive carbon particles. Consequently, the reaction area inside the electrodes is increased, and higher performance is exhibited.
    Type: Application
    Filed: January 3, 2003
    Publication date: July 8, 2004
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Eiichi Yasumoto, Akihiko Yoshida, Makoto Uchida, Hisaaki Gyoten, Kazuhito Hatoh, Yasushi Sugawara, Junji Morita, Teruhisa Kanbara, Yasuo Takebe, Masato Hosaka, Junji Niikura
  • Patent number: 6696194
    Abstract: A polymer electrolyte fuel cell including a hydrogen-ion-conductive polymer electrolyte membrane, a pair of electrodes sandwiching the membrane, a conductive separator plate having a gas passage for supplying a fuel to one of the electrodes, and a conductive separator plate having a gas passage for supplying an oxidant to the other electrode. The metallic conductive separator plate is a type in which a conductive coat including conductive particles and glass is formed on a surface having a gas passage. As a result, the corrosion of the metallic plate is suppressed and the degradation of the power generation efficiency after extended use is also suppressed.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: February 24, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yoshihiro Hori, Takeshi Yonamine, Osamu Sakai, Masato Hosaka
  • Publication number: 20030175579
    Abstract: To improve the performance of a catalyst layer of a fuel cell electrode, the weight ratio of a hydrogen ion conductive polymer electrolyte and electroconductive carbon particles in the catalyst layer is controlled to satisfy the formula (1): Y=a·logX−b+c, where log represents natural logarithm, X represents the specific surface area of the electroconductive carbon particles (m2/g), Y=(the weight of the hydrogen ion conductive polymer electrolyte)/(the weight of the electroconductive carbon particles), a=0.216, c=±0.300, b=0.421 at an air electrode and b=0.221 at an fuel electrode.
    Type: Application
    Filed: February 14, 2003
    Publication date: September 18, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Makoto Uchida, Eiichi Yasumoto, Akihiko Yoshida, Yasushi Sugawara, Osamu Sakai, Kazuhito Hatoh, Junji Niikura, Masato Hosaka, Teruhisa Kanbara, Takeshi Yonamine, Yasuo Takebe, Yoshihiro Hori, Hisaaki Gyoten, Hiroki Kusakabe
  • Publication number: 20030170520
    Abstract: It is difficult to realize a small fuel cell capable of being installed in mobile device by merely downsizing a conventional fuel cell without changing the configuration. The present invention provides a small fuel cell employing a polymer electrolyte thin film, by using a semiconductor process. A polymer electrolyte thin film fuel cell in accordance with the present invention comprises: a substrate having a plurality of openings; an electrolyte membrane-electrode assembly formed on the substrate so as to cover each of the openings, the assembly comprising a first catalyst electrode layer, a hydrogen ion conductive polymer electrolyte membrane and a second catalyst electrode layer which are formed successively; and fuel and oxidant supply means for supplying a fuel or an oxidant gas to the first catalyst electrode layer through the openings, and an oxidant gas or a fuel to the second catalyst electrode layer.
    Type: Application
    Filed: December 11, 2002
    Publication date: September 11, 2003
    Inventors: Satoru Fujii, Kazuhito Hatoh, Masato Hosaka, Kohji Yuasa, Yasutaka Noguchi, Satoshi Shibutani, Aoi Tanaka, Nobuhiko Hojo, Yukihiro Okada
  • Publication number: 20030158273
    Abstract: In order to obtain an electrolyte membrane-electrode assembly using a thin electrolyte membrane, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of forming a hydrogen ion-conductive polymer electrolyte membrane on a base material; a treatment step of reducing adhesion force between the base material and the hydrogen ion-conductive polymer electrolyte membrane; a step of separating and removing the base material; and a step of bonding a catalyst layer and a gas diffusion layer onto the hydrogen ion-conductive polymer electrolyte membrane, and, in order to obtain an electrolyte membrane-electrode assembly which has a catalyst without clogging and is excellent in electrode characteristics, the present invention provides a production method of an electrolyte membrane-electrode assembly comprising: a step of bonding a hydrogen ion-conductive polymer electrolyte membrane and a catalyst layer via a coating layer; a step of removing the coating layer
    Type: Application
    Filed: September 30, 2002
    Publication date: August 21, 2003
    Inventors: Shinya Kosako, Masato Hosaka, Makoto Uchida
  • Publication number: 20030134180
    Abstract: In a polymer electrolyte fuel cell of the present invention, at least one of electrodes comprises conductive carbon carrying a platinum group metal catalyst, conductive carbon carrying no catalyst metal and a hydrogen ion-conductive polymer electrolyte. The preferable amount of the conductive carbon carrying no catalyst metal is equivalent to 5 to 50 wt % of the conductive carbon carrying the catalyst metal. Incorporation of the conductive carbon carrying no catalyst metal to the catalyst layer enables reduction in potential concentration on part of electron conduction channels in an electrode, whereby an electrode for a polymer electrolyte fuel cell having an excellent life characteristic can be provided.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 17, 2003
    Inventors: Yoshihiro Hori, Masato Hosaka, Junji Niikura, Kazuhito Hatoh, Teruhisa Kanbara, Takeshi Yonamine, Hiroaki Matsuoka
  • Patent number: 6579347
    Abstract: The present invention, relating to a method for removing dimethyl sulfide and tertiary butyl mercaptan present in city gas as the odorants, is aimed at removal of the sulfur compounds from city gas. The present invention removes dimethyl sulfide and tertiary butyl mercaptan in city gas in the presence of a sulfur compound adsorbent containing one of faujasite, &bgr;, L and MFI type zeolite. The adsorbent, being composed of zeolite and an inorganic binder, can be regenerated under heating.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: June 17, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidenobu Wakita, Yukiyoshi Ono, Yuko Tachibana, Masato Hosaka
  • Patent number: 6568669
    Abstract: A sheet post-processing apparatus includes a head unit and an anvil unit movably disposed in a direction traversing the sheet discharge direction to provide staples into a sheet bundle. A feed path is disposed between the head unit and the anvil unit for allowing the sheet bundle to pass therethrough. The sheet bundle is moved from a stacking device to the feed path, wherein the head unit and anvil unit stitch the sheet bundle fed for a specified distance into the feed path.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: May 27, 2003
    Assignee: Nisca Corporation
    Inventor: Masato Hosaka
  • Publication number: 20030091885
    Abstract: The present invention provides an electrolyte membrane-gasket assembly for a fuel cell, including a polymer electrolyte membrane and a gasket, made of a seal material, covering the peripheral portion of the electrolyte membrane, in which the electrolyte membrane has a sequence of a plurality of through-holes in the peripheral portion, and a portion of the gasket covering one surface of the electrolyte membrane and a portion covering the other surface are connected to each other through the through-holes of the electrolyte membrane. This assembly provides a polymer electrolyte fuel cell that is free from gas cross leakage caused by a detachment of the gasket from the polymer electrolyte membrane. It is preferable to further include catalyst layers carried on both surfaces of the polymer electrolyte membrane, respectively, and protective films covering, respectively, sections spanning from the peripheral portion of each of the catalyst layers to the peripheral portion of the polymer electrolyte membrane.
    Type: Application
    Filed: October 1, 2002
    Publication date: May 15, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Susumu Kobayashi, Masato Hosaka, Kazuhito Hatoh, Hikaru Murakami, Mikio Takezawa, Takayuki Onishi