Patents by Inventor Masato KITABAYASHI

Masato KITABAYASHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11271044
    Abstract: An organic photoelectric conversion device includes first and second organic photoelectric conversion elements which convert light into electrical energy. The first and second organic photoelectric conversion elements are disposed to be stacked in this order along an incident direction of the light. The first organic photoelectric conversion element includes a first element main body including a first substrate, first and second transparent electrodes, and an organic photoelectric conversion unit having sensitivity in a first wavelength band of the light, and a first protective film that covers the first element main body. The second organic photoelectric conversion element includes a second element main body including a second substrate, a third transparent electrode, an electrode, and an organic photoelectric conversion unit having sensitivity in a second wavelength band of the light, and a second protective film that covers the second element main body.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 8, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasuyuki Horiuchi, Hiroyuki Sugiyama, Masato Kitabayashi, Naoki Umebayashi
  • Patent number: 11122996
    Abstract: A blood glucose measurement device, a blood glucose calculation method, and a blood glucose calculation program capable of accurately measuring a blood glucose level by using light are provided. The blood glucose measurement device includes a light source 11 that outputs measurement light L1 to be input to a living body 50; a light detector 12 that detects the measurement light L1 propagated inside the living body 50 and generates a detection signal in accordance with an intensity of the measurement light L1; and a computation unit that obtains a time lag between a temporal change in a first parameter related to an oxygenated hemoglobin concentration and a temporal change in a second parameter related to a deoxygenated hemoglobin concentration based on the detection signal, and obtains the data related to the blood glucose level based on the time lag.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: September 21, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoya Nakazawa, Rui Sekine, Masato Kitabayashi, Anna Ienaka, Yu Hashimoto
  • Publication number: 20210118953
    Abstract: An organic photoelectric conversion device includes first and second organic photoelectric conversion elements which convert light into electrical energy. The first and second organic photoelectric conversion elements are disposed to be stacked in this order along an incident direction of the light. The first organic photoelectric conversion element includes a first element main body including a first substrate, first and second transparent electrodes, and an organic photoelectric conversion unit having sensitivity in a first wavelength band of the light, and a first protective film that covers the first element main body. The second organic photoelectric conversion element includes a second element main body including a second substrate, a third transparent electrode, an electrode, and an organic photoelectric conversion unit having sensitivity in a second wavelength band of the light, and a second protective film that covers the second element main body.
    Type: Application
    Filed: January 31, 2019
    Publication date: April 22, 2021
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasuyuki HORIUCHI, Hiroyuki SUGIYAMA, Masato KITABAYASHI, Naoki UMEBAYASHI
  • Publication number: 20200178858
    Abstract: A blood glucose measurement device, a blood glucose calculation method, and a blood glucose calculation program capable of accurately measuring a blood glucose level by using light are provided. The blood glucose measurement device includes a light source 11 that outputs measurement light L1 to be input to a living body 50; a light detector 12 that detects the measurement light L1 propagated inside the living body 50 and generates a detection signal in accordance with an intensity of the measurement light L1; and a computation unit that obtains a time lag between a temporal change in a first parameter related to an oxygenated hemoglobin concentration and a temporal change in a second parameter related to a deoxygenated hemoglobin concentration based on the detection signal, and obtains the data related to the blood glucose level based on the time lag.
    Type: Application
    Filed: September 19, 2017
    Publication date: June 11, 2020
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Tomoya NAKAZAWA, Rui SEKINE, Masato KITABAYASHI, Anna IENAKA, Yu HASHIMOTO