Patents by Inventor Masato M. Toshima

Masato M. Toshima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6599076
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: July 29, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall
  • Patent number: 6545420
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: April 8, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Craig A. Roderick, John R. Trow, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Jay D. Pinson, II, Tetsuya Ishikawa, Lawrence Chang-Lai Lei, Masato M. Toshima
  • Patent number: 6518195
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the 10 wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Craig A. Roderick, John R. Trow, Tetsuya Ishikawa, Jay D. Pinson, II, Lawrence Chang-Lai Lei, Masato M. Toshima, Gerald Zheyao Yin
  • Publication number: 20030002959
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Application
    Filed: August 19, 2002
    Publication date: January 2, 2003
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall
  • Publication number: 20030002960
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Application
    Filed: August 19, 2002
    Publication date: January 2, 2003
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall
  • Patent number: 6488807
    Abstract: The invention is embodied in an RF plasma reactor for processing a semiconductor workpiece, including wall structures for containing a plasma therein, a workpiece support, a coil antenna capable of receiving a source RF power signal and being juxtaposed near the chamber, the workpiece support including a bias electrode capable of receiving a bias RF power signal, and first and second magnet structures adjacent the wall structure and in spaced relationship, with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: December 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Craig A. Roderick, John R. Trow, Tetsuya Ishikawa, Jay D. Pinson, II, Lawrence Chang-Lai Lei, Masato M. Toshima, Gerald Zheyao Yin
  • Patent number: 6454508
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: September 24, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall
  • Patent number: 6454519
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: September 24, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall, David Cheng
  • Publication number: 20020004309
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Application
    Filed: June 9, 1999
    Publication date: January 10, 2002
    Inventors: KENNETH S. COLLINS, CRAIG A. RODERICK, JOHN R. TROW, CHAN-LON YANG, JERRY YUEN-KUI WONG, JEFFREY MARKS, PETER R. KESWICK, DAVID W. GROECHEL, JAY D. PINSON, TETSUYA ISHIKAWA, LAWRENCE CHANG-LAI LEI, MASATO M. TOSHIMA
  • Publication number: 20010014266
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Application
    Filed: May 1, 1998
    Publication date: August 16, 2001
    Inventors: MASATO M. TOSHIMA, PHIL M. SALZMAN, STEVEN C. MURDOCH, CHENG WANG, MARK A. STENHOLM, JAMES HOWARD, LEONARD HALL
  • Patent number: 6251792
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: June 26, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Craig A. Roderick, John R. Trow, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Jay D. Pinson, II, Tetsuya Ishikawa, Lawrence Chang-Lai Lei, Masato M. Toshima, Gerald Zheyao Yin
  • Patent number: 6068784
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: May 30, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Craig A. Roderick, John R. Trow, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Jay D. Pinson, II, Tetsuya Ishikawa, Lawrence Chang-Lai Lei, Masato M. Toshima
  • Patent number: 5769588
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Grant
    Filed: August 20, 1996
    Date of Patent: June 23, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall, David Cheng
  • Patent number: 5753133
    Abstract: A chamber for processing substrates includes a support member therein which is suspended from a sidewall of the chamber. The support member includes multiple planar faces for receiving substrates thereon, and is rotatable about a horizontal axis to position the multiple planar faces in a horizontal position to place the substrates on the planar faces or remove the substrates from the planar faces, and a second position to place the substrates in a non-horizontal position for processing. A clamping and lifting apparatus is provided on the support member. The clamping and lifting apparatus is positionable, with respect to the support member, in an extended position to permit a substrate to be positioned between the clamping and lifting assembly and the support member, and in a retracted position to clamp the substrate to the support member. A clamp actuator is disposed on the chamber wall to move the clamping and lifting assembly between the extended and retracted positions.
    Type: Grant
    Filed: July 11, 1994
    Date of Patent: May 19, 1998
    Assignee: Applied Komatsu Technology, Inc.
    Inventors: Jerry Wong, Masato M. Toshima, Kam S. Law, Dan Maydan, Norman L. Turner
  • Patent number: 5556501
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: April 1, 1993
    Date of Patent: September 17, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Craig A. Roderick, John R. Trow, Chan-Lon Yang, Jerry Y. Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Jay D. Pinson, II, Tetsuya Ishikawa, Lawrence C. Lei, Masato M. Toshima, Gerald Z. Yin
  • Patent number: 5308417
    Abstract: A plasma reactor containing within the processing chamber pieces of magnetic material located to reduce and/or substantially eliminate systematic processing rate nonuniformities. These pieces are placed inside the chamber or attached inside of the pedestal adjacent to the top of the pedestal, where the wafer is to be located for processing. The thickness, shape and magnetic permeabilities of these magnetic pieces are selected to optimize process uniformity.
    Type: Grant
    Filed: September 12, 1991
    Date of Patent: May 3, 1994
    Assignee: Applied Materials, Inc.
    Inventors: David W. Groechel, Masato M. Toshima, Robert J. Steger, Jerry Y. Wong, Tetsuya Ishikawa, Regga Tekeste, Koichi Ito, Tetsuhiko Sambei
  • Patent number: 5186594
    Abstract: A workpiece loading interface is included within a workpiece processing system which processes workpieces, typically wafers, in a vacuum. The workpiece loading interface includes two separate chambers. Each chamber may be separately pumped down. Thus, while a first cassette of wafers, from a first chamber is being accessed, a second cassette of wafers may be loaded in the second chamber and the second chamber pumped down. Each chamber is designed to minimize intrusion to a clean room. Thus a door to each chamber has a mechanism which, when opening the door, first moves the door slightly away from an opening in the chamber and then the door is moved down parallel to the chamber. After the door is opened, a cassette of wafers is lowered through the opening in a motion much like a drawbridge. The cassette may be pivoted within the chamber when the position from which wafers are accessed from the cassette differs from the position from which the cassette is lowered out of the chamber.
    Type: Grant
    Filed: April 19, 1990
    Date of Patent: February 16, 1993
    Assignee: Applied Materials, Inc.
    Inventors: Masato M. Toshima, Phil M. Salzman, Steven C. Murdoch, Cheng Wang, Mark A. Stenholm, James Howard, Leonard Hall, David Cheng