Patents by Inventor Masatoshi Yonemura

Masatoshi Yonemura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180333807
    Abstract: A laser processing device includes plural laser sources and a focusing section that focuses respective light beams of the plural laser sources to form plural focus points on a workpiece, and that focuses such that respective portions of at least some of the plural focus points are overlapping.
    Type: Application
    Filed: March 17, 2017
    Publication date: November 22, 2018
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Kazuo HASEGAWA, Satoru KATO, Tadashi ICHIKAWA, Masatoshi YONEMURA
  • Patent number: 7998374
    Abstract: A taper angle of a self-written optical waveguide to be formed is increased or decreased at a desired position. A range of light (aperture number) condensed by a focusing lens 31 is adjusted by an iris diaphragm 22? in which the hole diameter can be changed from 1 mm to 12 mm. An image of the self-written optical waveguide 51 being fabricated is taken with a CCD camera 70, and image processing of the image is executed in real time by an image processing device 71. The taper angle of the self-written optical waveguide 51 is measured, and the taper angle of the self-written optical waveguide 51 can be desirably increased or decreased by changing the diameter of iris diaphragm 22?.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Masatoshi Yonemura, Akari Nakao, Manabu Kagami
  • Patent number: 7907808
    Abstract: A self-written branched optical waveguide is formed. A laser beam 2 from a laser source (not shown) is focused with a lens 3 onto the face of incidence 10 of an optical fiber 1. The laser beam of an LP11 mode was emitted from the face of emergence 11, and “bimodal” light intensity peaks were arranged in the horizontal direction (1.A). A slide glass 4 coated with a photocurable resin gel 5 was placed horizontally (1.B). A single linear cured material 61 was formed as the LP11-mode laser beam was emitted from the face of emergence 11 of the optical fiber 1 (1.C). A branch portion 62 was then formed at a distance L from the face of emergence 11 of the optical fiber 1, which was followed by the growth of two cylindrical cured materials 63a and 63b. The two cylindrical cured materials 63a and 63b were linear branches, and formed an angle of about four degrees. An optical waveguide 60 thus formed was composed of cured materials 61, 62, 63a, and 63b (1.D).
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: March 15, 2011
    Assignees: Kabushiki Kaisha Totoya Chuo Kenkyusho, National University Corporation Shizuoka University Faculity of Engineering
    Inventors: Manabu Kagami, Tatsuya Yamashita, Masatoshi Yonemura, Naomichi Okamoto, Masahiro Tomiki
  • Publication number: 20100001421
    Abstract: A taper angle of a self-written optical waveguide to be formed is increased or decreased at a desired position. A range of light (aperture number) condensed by a focusing lens 31 is adjusted by an iris diaphragm 22? in which the hole diameter can be changed from 1 mm to 12 mm. An image of the self-written optical waveguide 51 being fabricated is taken with a CCD camera 70, and image processing of the image is executed in real time by an image processing device 71. The taper angle of the self-written optical waveguide 51 is measured, and the taper angle of the self-written optical waveguide 51 can be desirably increased or decreased by changing the diameter of iris diaphragm 22?.
    Type: Application
    Filed: September 27, 2007
    Publication date: January 7, 2010
    Inventors: Masatoshi Yonemura, Akari Nakao, Manabu Kagami
  • Publication number: 20090285532
    Abstract: [Object] A self-written branched optical waveguide is formed. [Solving Means] A laser beam 2 from a laser source (not shown) is focused with a lens 3 onto the face of incidence 10 of an optical fiber 1. The laser beam of an LP11 mode was emitted from the face of emergence 11, and “bimodal” light intensity peaks were arranged in the horizontal direction (1.A). A slide glass 4 coated with a photocurable resin gel 5 was placed horizontally (1.B). A single linear cured material 61 was formed as the LP11-mode laser beam was emitted from the face of emergence 11 of the optical fiber 1 (1.C). A branch portion 62 was then formed at a distance L from the face of emergence 11 of the optical fiber 1, which was followed by the growth of two cylindrical cured materials 63a and 63b. The two cylindrical cured materials 63a and 63b were linear branches, and formed an angle of about four degrees. An optical waveguide 60 thus formed was composed of cured materials 61, 62, 63a, and 63b (1.D).
    Type: Application
    Filed: September 5, 2006
    Publication date: November 19, 2009
    Applicants: Kabushiki Kaisha Toyota Chuo Kenkyusho, National University Corporation Shizuoka University Faculty of Engineering
    Inventors: Manabu Kagami, Tatsuya Yamashita, Masatoshi Yonemura, Naomichi Okamoto, Masahiro Tomiki
  • Patent number: 7166322
    Abstract: In the condition that an acrylic transparent vessel is filled with a curable resin solution capable of being cured by a light, a plastic optical fiber is immersed in the curable resin solution. A laser beam is applied on the curable resin solution through the plastic optical fiber. The curable resin solution is cured gradually by the laser beam applied on the curable resin solution, so that an axial core is formed. Then, the transparent vessel is left at rest for predetermined time, or uncured part of the curable resin solution is removed from the transparent vessel and the transparent vessel is then filled with another curable resin solution. Then, ultraviolet rays are applied on the transparent vessel from the outside of the transparent vessel to cure the residual uncured part of the curable resin solution.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: January 23, 2007
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yukitoshi Inui, Manabu Kagami, Akari Kawasaki, Tatsuya Yamashita, Masatoshi Yonemura
  • Publication number: 20050058420
    Abstract: In the condition that an acrylic transparent vessel is filled with a curable resin solution capable of being cured by a light, a plastic optical fiber is immersed in the curable resin solution. A laser beam is applied on the curable resin solution through the plastic optical fiber. The curable resin solution is cured gradually by the laser beam applied on the curable resin solution, so that an axial core is formed. Then, the transparent vessel is left at rest for predetermined time, or uncured part of the curable resin solution is removed from the transparent vessel and the transparent vessel is then filled with another curable resin solution. Then, ultraviolet rays are applied on the transparent vessel from the outside of the transparent vessel to cure the residual uncured part of the curable resin solution.
    Type: Application
    Filed: August 9, 2004
    Publication date: March 17, 2005
    Applicant: Toyoda Gosei Co., Ltd
    Inventors: Yukitoshi Inui, Manabu Kagami, Akari Kawasaki, Tatsuya Yamashita, Masatoshi Yonemura
  • Publication number: 20020114601
    Abstract: An optical fiber, a mixture solution of the photosetting resins polymerizing in two different polymerization types, and a transparent container are prepared. The photosetting resins are not copolymerized, and have different activation wavelengths of the photopolymerization initiators for hardening. Employing a combination in which the activation wavelength of a photopolymerization initiator for a photosetting resin with higher refractive index after hardening is longer than the activation wavelength of a photopolymerization initiator for a photosetting resin with lower refractive index after hardening, a core portion can be only formed by hardening the photosetting resin with higher refractive index due to a difference between two wavelengths. Thereafter, a clad portion can be formed by hardening two kinds of photosetting resins, where by an optical transmission device can be manufactured.
    Type: Application
    Filed: November 28, 2001
    Publication date: August 22, 2002
    Inventors: Manabu Kagami, Tatsuya Yamashita, Hiroshi Ito, Kazuo Okamoto, Masatoshi Yonemura, Satoru Kato, Mitsutoshi Maeda, Naoya Chujo, Takashi Wada, Yukitoshi Inui, Shigeru Fukumoto, Naoki Yoshimura