Patents by Inventor Masatoshi Yoshikawa

Masatoshi Yoshikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8085511
    Abstract: A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: December 27, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Yuzo Kamiguchi, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Tomohiko Nagata, Takeo Sakakubo, Masashi Sahashi
  • Publication number: 20110294291
    Abstract: According to one embodiment, a semiconductor device includes a switch element provided in a surface area of a semiconductor substrate, a contact plug with an upper surface and a lower surface, and a function element provided on the upper surface of the contact plug. The lower surface of the contact plug is connected to the switch element. The upper surface of the contact plug has a maximum roughness of 0.2 nm or less.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 1, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yukiteru Matsui, Gaku Minamihaba, Hajime Eda, Masayoshi Iwayama, Minoru Amano, Masatoshi Yoshikawa, Motoyuki Sato, Kyoichi Suguro, Masako Kodera
  • Publication number: 20110222335
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masatoshi YOSHIKAWA, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110211389
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Application
    Filed: May 5, 2011
    Publication date: September 1, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masatoshi YOSHIKAWA, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7965544
    Abstract: An inadvertent write can be prevented when a read is performed. The duration of the write current pulse for writing information in the magnetic memory layer is longer than the duration of the read current pulse for reading the information from the magnetic memory layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 21, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Kitagawa, Masatoshi Yoshikawa, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7957184
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 7, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110116305
    Abstract: A magnetoresistive element includes a first magnetic layer which includes a first surface and a second surface and has a first standard electrode potential, a second magnetic layer, a barrier layer which is provided between the second magnetic layer and the first surface of the first magnetic layer, and a nonmagnetic cap layer which contacts the second surface of the first magnetic layer and is formed from an alloy of a first metal material and a second metal material, the first metal material having a second standard electrode potential lower than the first standard electrode potential, the second metal material having a third standard electrode potential higher than the first standard electrode potential.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Inventors: Makoto NAGAMINE, Toshihiko Nagase, Sumio Ikegawa, Katsuya Nishiyama, Masatoshi Yoshikawa
  • Patent number: 7924607
    Abstract: A magnetoresistive effect element includes a first magnetic layer, a second magnetic layer, and a first spacer layer. The first magnetic layer has an invariable magnetization direction. The second magnetic layer has a variable magnetization direction, and contains at least one element selected from Fe, Co, and Ni, at least one element selected from Ru, Rh, Pd, Ag, Re, Os, Ir, Pt, and Au, and at least one element selected from V, Cr, and Mn. The spacer layer is formed between the first magnetic layer and the second magnetic layer, and made of a nonmagnetic material. A bidirectional electric current flowing through the first magnetic layer, the spacer layer, and the second magnetic layer makes the magnetization direction of the second magnetic layer variable.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadashi Kai, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7920361
    Abstract: It is made possible to provide a magnetoresistive effect element that can reverse magnetization direction with a low current, having low areal resistance (RA) and a high TMR ratio. A magnetoresistive effect element includes: a film stack that includes a magnetization free layer including a magnetic layer in which magnetization direction is changeable, a magnetization pinned layer including a magnetic layer in which magnetization direction is pinned, and an intermediate layer provided between the magnetization free layer and the magnetization pinned layer, the intermediate layer being an oxide containing boron (B) and an element selected from the group consisting of Ca, Mg, Sr, Ba, Ti, and Sc. Current is applied bidirectionally between the magnetization pinned layer and the magnetization free layer through the intermediate layer, so that the magnetization of the magnetization free layer is reversible.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Tadashi Kai, Toshihiko Nagase, Eiji Kitagawa, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20110073970
    Abstract: According to one embodiment, a magnetoresistive element includes a first magnetic layer with a variable magnetization and an easy-axis in a perpendicular direction to a film surface, a second magnetic layer with an invariable magnetization and an easy-axis in the perpendicular direction, and a first nonmagnetic layer between the first and second magnetic layers. The first magnetic layer comprises a ferromagnetic material including an alloy in which Co and Pd, or Co and Pt are alternately laminated on an atomically close-packed plane thereof. The first magnetic layer has C-axis directing the perpendicular direction. And a magnetization direction of the first magnetic layer is changed by a current flowing through the first magnetic layer, the first nonmagnetic layer and the second magnetic layer.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 31, 2011
    Inventors: Tadashi Kai, Katsuya Nishiyama, Toshihiko Nagase, Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Makoto Nagamine, Masahiko Nakayama, Naoharu Shimomura, Hiroaki Yoda, Kei Yakushiji, Shinji Yuasa, Hitoshi Kubota, Taro Nagahama, Akio Fukushima, Koji Ando
  • Patent number: 7898846
    Abstract: A magnetoresistive element includes a first magnetic layer which includes a first surface and a second surface and has a first standard electrode potential, a second magnetic layer, a barrier layer which is provided between the second magnetic layer and the first surface of the first magnetic layer, and a nonmagnetic cap layer which contacts the second surface of the first magnetic layer and is formed from an alloy of a first metal material and a second metal material, the first metal material having a second standard electrode potential lower than the first standard electrode potential, the second metal material having a third standard electrode potential higher than the first standard electrode potential.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Nagamine, Toshihiko Nagase, Sumio Ikegawa, Katsuya Nishiyama, Masatoshi Yoshikawa
  • Patent number: 7897274
    Abstract: A magnetoresistive device includes a magnetization pinned layer, a magnetization free layer, a nonmagnetic intermediate layer formed between the magnetization pinned layer and the magnetization free layer, and electrodes allowing a sense current to flow in a direction substantially perpendicular to the plane of the stack including the magnetization pinned layer, the nonmagnetic intermediate layer and the magnetization free layer. At least one of the magnetization pinned layer and the magnetization free layer is substantially formed of a binary or ternary alloy represented by the formula FeaCobNic (where a+b+c=100 at %, and a?75 at %, b?75 at %, and c?63 at %), or formed of an alloy having a body-centered cubic crystal structure.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Masatoshi Yoshikawa, Yuzo Kamiguchi, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 7898774
    Abstract: A spin valve type magnetoresistive effect element for vertical electric conduction includes a magnetoresistive effect film in which a resistance adjustment layer made of a material containing conductive carriers not more than 1022/cm3 is inserted. Thus the resistance value of a portion in change of spin-relied conduction is raised to an adequate value, thereby to increase the resistance variable amount.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Masatoshi Yoshikawa, Katsuhiko Koui, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 7894246
    Abstract: A magnetoresistive element includes: a magnetization free layer having a first plane and a second plane located on the opposite side from the first plane, and having a variable magnetization direction; a magnetization pinned layer provided on the first plane side of the magnetization free layer, and having a pinned magnetization direction; a first tunnel barrier layer provided between the magnetization free layer and the magnetization pinned layer; a second tunnel barrier layer provided on the second plane of the magnetization free layer; and a non-magnetic layer provided on a plane on the opposite side of the second tunnel barrier layer from the magnetization free layer. The magnetization direction of the magnetization free layer is variable by applying current between the magnetization pinned layer and the non-magnetic layer, and a resistance ratio between the first tunnel barrier layer and the second tunnel barrier layer is in a range of 1:0.25 to 1:4.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomomasa Ueda, Hisanori Aikawa, Masatoshi Yoshikawa, Naoharu Shimomura, Masahiko Nakayama, Sumio Ikegawa, Keiji Hosotani, Makoto Nagamine
  • Publication number: 20100315864
    Abstract: A magnetoresistive element includes: a magnetization free layer having a first plane and a second plane located on the opposite side from the first plane, and having a variable magnetization direction; a magnetization pinned layer provided on the first plane side of the magnetization free layer, and having a pinned magnetization direction; a first tunnel barrier layer provided between the magnetization free layer and the magnetization pinned layer; a second tunnel barrier layer provided on the second plane of the magnetization free layer; and a non-magnetic layer provided on a plane on the opposite side of the second tunnel barrier layer from the magnetization free layer. The magnetization direction of the magnetization free layer is variable by applying current between the magnetization pinned layer and the non-magnetic layer, and a resistance ratio between the first tunnel barrier layer and the second tunnel barrier layer is in a range of 1:0.25 to 1:4.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 16, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomomasa UEDA, Hisanori Aikawa, Masatoshi Yoshikawa, Naoharu Shimomura, Masahiko Nakayama, Sumio Ikegawa, Keiji Hosotani, Makoto Nagamine
  • Patent number: 7848059
    Abstract: A magnetoresistive effect element includes a magnetization fixed layer having substantially fixed magnetization direction. A magnetization variable layer has a variable magnetization direction, consists of a magnetic alloy that has a BCC structure and is expressed by Fe1-x-yCoxNiy (0?x+y?1, 0?x?1, 0?y?1), and contains at least one additive element of V, Cr, and Mn in a range of 0<a?20 at % (a is a content). An intermediate layer is disposed between the magnetization fixed layer and the magnetization variable layer and consists of a nonmagnetic material. The magnetization direction of the magnetization variable layer is switched by a bidirectional current passing through the magnetization fixed layer, the intermediate layer, and the magnetization variable layer.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masatoshi Yoshikawa, Tadashi Kai, Toshihiko Nagase, Eiji Kitagawa, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100290270
    Abstract: An inadvertent write can be prevented when a read is performed. The duration of the write current pulse for writing information in the magnetic memory layer is longer than the duration of the read current pulse for reading the information from the magnetic memory layer.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eiji KITAGAWA, Masatoshi YOSHIKAWA, Tatsuya KISHI, Hiroaki YODA
  • Publication number: 20100244163
    Abstract: A magnetoresistive element includes a stabilization layer, a nonmagnetic layer, a spin-polarization layer provided between the stabilization layer and the nonmagnetic layer, the spin-polarization layer having magnetic anisotropy in a perpendicular direction, and a magnetic layer provided on a side of the nonmagnetic layer opposite to a side on which the spin-polarization layer is provided. The stabilization layer has a lattice constant smaller than that of the spin-polarization layer in an in-plane direction. The spin-polarization layer contains at least one element selected from a group consisting of cobalt (Co) and iron (Fe), has a body-centered tetragonal (BCT) structure, and has a lattice constant ratio c/a of 1.10 (inclusive) to 1.35 (inclusive) when a perpendicular direction is a c-axis and an in-plane direction is an a-axis.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 30, 2010
    Inventors: Tadaomi Daibou, Toshihiko Nagase, Eiji Kitagawa, Masatoshi Yoshikawa, Katsuya Nishiyama, Makoto Nagamine, Tatsuya Kishi, Hiroaki Yoda
  • Publication number: 20100230770
    Abstract: The present invention provides a low-resistance magnetoresistive element of a spin-injection write type. A crystallization promoting layer that promotes crystallization is formed in contact with an interfacial magnetic layer having an amorphous structure, so that crystallization is promoted from the side of a tunnel barrier layer, and the interface between the tunnel barrier layer and the interfacial magnetic layer is adjusted. With this arrangement, it is possible to form a magnetoresistive element that has a low resistance so as to obtain a desired current value, and has a high TMR ratio.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 16, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masatoshi Yoshikawa, Eiji Kitagawa, Tadaomi Daibou, Toshihiko Nagase, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 7791843
    Abstract: There is provided a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers to be controlled, and a magnetic head and magnetic recording and/or reproducing system using the same. In a magnetoresistance effect element wherein a sense current is caused to flow in a direction perpendicular to the plane of the film, a resistance regulating layer is provided in at least one of a pinned layer, a free layer and an non-magnetic intermediate layer. The resistance regulating layer contains, as a principal component, an oxide, a nitride, a fluoride, a carbide or a boride. The resistance regulating layer may be a continuous film or may have pin holes. Thus, it is possible to provide a practical magnetoresistance effect element which has an appropriate value of resistance, which can be sensitized and which has a small number of magnetic layers, while effectively utilizing the scattering effect depending on spin.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: September 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuuzo Kamiguchi, Hiromi Yuasa, Tomohiko Nagata, Hiroaki Yoda, Katsuhiko Koui, Masatoshi Yoshikawa, Hitoshi Iwasaki, Masashi Sahashi, Masayuki Takagishi