Patents by Inventor Masatsugu Iribe

Masatsugu Iribe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7365508
    Abstract: A motor comprises: coil on/off switching devices for switching between an on-state wherein current is supplied to the coils, and a first off-state wherein the coil terminals are open-circuited or a second off-state wherein the coil terminals are short-circuited; and a coil current control device for controlling switching operations of the coil on/off switching devices according to commands input to the motor. In the event that motor movement with great mechanical compliance is required, the ratio of the period of the first off-state is increased, and on the other hand, in the event that motor movement with great viscosity resistance is required, the ratio of the period of the second off-state is increased. This solves the problems of torque loss and cogging during a period wherein no current is applied to the coil.
    Type: Grant
    Filed: November 28, 2003
    Date of Patent: April 29, 2008
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka, Yoshihiro Itoh, Shinya Suzuki
  • Patent number: 7366587
    Abstract: The characteristics of actuators themselves and the characteristics of controllers for the actuators are dynamically or statically controlled to achieve stable and highly efficient movements. In a stage in which a leg in the flight state is uplifted such that the reactive force from the floor received by the foot sole of the leg is zero, the characteristics of the respective actuators for the knee joint pitch axis and the ankle pitch and roll axes of the leg in the flight state are set for decreasing the low range gain, increasing the quantity of phase lead and for decreasing the viscous resistance of the actuators, in order to impart mechanical passiveness and fast response characteristics. The followup control for the high frequency range may be achieved as the force of impact at the instant of touchdown is buffered.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 29, 2008
    Assignees: Sony Corporation
    Inventors: Masatsugu Iribe, Jinichi Yamaguchi
  • Patent number: 7072740
    Abstract: In a mobile robot, the actuator characteristics are dynamically or statically controlled, during motions of an entire robot body in the course of falldown or descent, to realize stable highly efficient motions. In each stage of the falldown motions, the characteristics of each joint site taking part in controlling the stable area are set so that the low range gain is low, the quantity of phase lead is large and the viscous resistance of the motor is large, in such a manner that these joint sites may be positioned to high accuracy in a controller manner to increase orientation stability. This assures the positioning accuracy of the joints as main component for controlling the quantity ?S/?t as a reference in controlling the falldown motions of the robot body to increase the motion stability.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 4, 2006
    Assignees: Sony Corporation
    Inventors: Masatsugu Iribe, Jinichi Yamaguchi
  • Patent number: 7061200
    Abstract: In order to suitably intercommunicate an output signal from a sensor arranged outside an actuator with a higher-order control system, an output from a contact sensor at an arbitrary position on a robot is entered to a nearest actuator device in that a wiring route is the shortest (or joint driving is not interfered therewith). Then, in the actuator device, the output of the outside sensor is processed to remove noise and sensor information is computed, and the processed results are bus-transmitted to the higher-order control system together with a drive-control signal of the actuator and sensor information from sensors housed in the actuator.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 13, 2006
    Assignee: Sony Corporation
    Inventor: Masatsugu Iribe
  • Patent number: 7023164
    Abstract: It is so arranged in a robot as to monitor the over-current state of each motor and that of two more than two motors when put together by seeing the total current value of the motors being monitored in parallel with absorption of both the static load torque and the dynamic load torque of each actuator/motor. Additionally, it is so arranged as to check if each of the predetermined unit members including the arm sections and the leg sections of the robot is in an over-current state or not and also if the entire robot is in an over-current state or not, while each of the motors are not in an over-current state.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 4, 2006
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Tomohisa Moridaira, Hiroshi Yamaguchi
  • Patent number: 6998809
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: February 14, 2006
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6995535
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: February 7, 2006
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6989645
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: January 24, 2006
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6987374
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: January 17, 2006
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6979969
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: December 27, 2005
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6965210
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 15, 2005
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6956345
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: October 18, 2005
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Patent number: 6956346
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: October 18, 2005
    Assignee: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050184697
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 25, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050179416
    Abstract: It is so arranged in a robot as to monitor the over-current state of each motor and that of two more than two motors when put together by seeing the total current value of the motors being monitored in parallel with absorption of both the static load torque and the dynamic load torque of each actuator/motor. Additionally, it is so arranged as to check if each of the predetermined unit members including the arm sections and the leg sections of the robot is in an over-current state or not and also if the entire robot is in an over-current state or not, while each of the motors are not in an over-current state.
    Type: Application
    Filed: December 2, 2004
    Publication date: August 18, 2005
    Inventors: Masatsugu Iribe, Tomohisa Moridaira, Hiroshi Yamaguchi
  • Publication number: 20050168184
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 4, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050168182
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 4, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050168185
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 4, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050168183
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: April 5, 2005
    Publication date: August 4, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20050162117
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: March 21, 2005
    Publication date: July 28, 2005
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka