Patents by Inventor Masaya Kawamata

Masaya Kawamata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9887109
    Abstract: A plasma etching method includes a holding step of holding a substrate, a processing gas supplying step of supplying processing gas to a space between the holding unit and an electrode plate facing the holding unit within the processing chamber, and a high frequency power supplying step of converting the processing gas supplied to the space from the plurality of supply parts into plasma by supplying a high frequency power from a high frequency power supply to at least one of the holding unit and the electrode plate. The processing gas supplying step includes controlling an adjustment unit configured to adjust a supply condition for supplying processing gas with respect to each of the plurality of supply parts such that the supply condition that is adjusted varies between a first position and a second position.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 6, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota
  • Patent number: 9583361
    Abstract: A method of processing a target object includes (a) exposing a resist mask to active species of hydrogen generated by exciting plasma of a hydrogen-containing gas within a processing vessel while the target object is mounted on a mounting table provided in the processing vessel; and (b) etching a hard mask layer by exciting plasma of an etchant gas within the processing vessel after the exposing of the resist mask to the active species of hydrogen. The plasma is excited by applying of a high frequency power for plasma excitation to an upper electrode. In the method, a distance between the upper electrode and the mounting table in the etching of the hard mask layer ((b) process) is set to be larger than a distance between the upper electrode and the mounting table in the exposing of the resist mask to the active species of hydrogen ((a) process).
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: February 28, 2017
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yoshihide Kihara, Hiromi Mochizuki, Masanobu Honda, Masaya Kawamata, Ken Kobayashi, Ryoichi Yoshida
  • Patent number: 9502219
    Abstract: The present disclosure provides a method of performing a plasma processing on a substrate by using a plasma processing apparatus including a processing container; an outer upper electrode provided to face a lower electrode; an inner upper electrode disposed inside the outer upper electrode; a first high-frequency power supply; a first power feeding unit; a second power feeding unit; and a variable condenser. The first and second power feeding units, a fixed condenser formed between the outer upper electrode and the inner upper electrode, and a closed circuit including the variable condenser become a resonance state when the variable condenser has a capacitance value in a predetermined resonance region. The method includes selectively using a capacitance value in a first region lower than the resonance region of the variable condenser and a capacitance value in a second region higher than the resonance region to perform the plasma processing.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 22, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Yoshihide Kihara, Masaya Kawamata, Toshio Haga
  • Patent number: 9460893
    Abstract: A substrate processing apparatus can suppress an edge gas from being diffused toward a center region of a substrate. An upper electrode 200 serving as a gas introducing unit configured to supply one kind of gas or different kinds of gases to a center region and an edge region of the substrate includes a center gas inlet section 204 having a multiple number of gas holes 212 for a center gas; and an edge gas inlet section 206 having a multiplicity of gas holes 214 for an edge gas. By providing a gas hole formation plate 230 having gas holes 232 communicating with the gas holes 214 at a bottom surface of the edge gas inlet section 206, a vertical position of edge gas discharging openings can be adjusted.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: October 4, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota
  • Patent number: 9349619
    Abstract: A plasma etching apparatus includes a processing chamber; a holding unit for holding the substrate within the processing chamber; an electrode plate facing the holding unit; a plurality of supply parts arranged at different radial positions with respect to the substrate for supplying processing gas to a space between the holding unit and the electrode plate; a high frequency power supply that supplies high frequency power to the holding unit and/or the electrode plate to convert the processing gas supplied to the space into plasma; an adjustment unit that adjusts a supply condition for each of the supply parts; and a control unit that controls the adjustment unit to vary the supply condition between a position where an effect of diffusion of processing gas on an active species concentration distribution at the substrate is dominant and a position where an effect of flow of the processing gas is dominant.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: May 24, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota
  • Publication number: 20160099161
    Abstract: A plasma etching method includes a holding step of holding a substrate, a processing gas supplying step of supplying processing gas to a space between the holding unit and an electrode plate facing the holding unit within the processing chamber, and a high frequency power supplying step of converting the processing gas supplied to the space from the plurality of supply parts into plasma by supplying a high frequency power from a high frequency power supply to at least one of the holding unit and the electrode plate. The processing gas supplying step includes controlling an adjustment unit configured to adjust a supply condition for supplying processing gas with respect to each of the plurality of supply parts such that the supply condition that is adjusted varies between a first position and a second position.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Inventors: Masaya KAWAMATA, Masanobu HONDA, Kazuhiro KUBOTA
  • Patent number: 9202707
    Abstract: A semiconductor device manufacturing method is provided that includes etching with a plasma a multilayer film including a first film and a second film with differing dielectric constants alternately stacked on a substrate using a photoresist layer arranged on the multilayer film as a mask, and forming the multilayer film into a stepped configuration. The semiconductor device manufacturing method includes repetitively performing a first step of etching the first film using the photoresist layer as the mask; a second step of adjusting a pressure within a processing chamber to 6-30 Torr, generating the plasma by applying a first high frequency power for biasing and a second high frequency power for plasma generation to the lower electrode, and etching the photoresist layer using the generated plasma; and a third step of etching the second film using the photoresist layer and the first film as the mask.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: December 1, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Masaya Kawamata, Masanobu Honda
  • Publication number: 20150262794
    Abstract: The present disclosure provides a method of performing a plasma processing on a substrate by using a plasma processing apparatus including a processing container; an outer upper electrode provided to face a lower electrode; an inner upper electrode disposed inside the outer upper electrode; a first high-frequency power supply; a first power feeding unit; a second power feeding unit; and a variable condenser. The first and second power feeding units, a fixed condenser formed between the outer upper electrode and the inner upper electrode, and a closed circuit including the variable condenser become a resonance state when the variable condenser has a capacitance value in a predetermined resonance region. The method includes selectively using a capacitance value in a first region lower than the resonance region of the variable condenser and a capacitance value in a second region higher than the resonance region to perform the plasma processing.
    Type: Application
    Filed: October 30, 2013
    Publication date: September 17, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yoshihide Kihara, Masaya Kawamata, Toshio Haga
  • Publication number: 20150243524
    Abstract: A method of processing a target object includes (a) exposing a resist mask to active species of hydrogen generated by exciting plasma of a hydrogen-containing gas within a processing vessel while the target object is mounted on a mounting table provided in the processing vessel; and (b) etching a hard mask layer by exciting plasma of an etchant gas within the processing vessel after the exposing of the resist mask to the active species of hydrogen. The plasma is excited by applying of a high frequency power for plasma excitation to an upper electrode. In the method, a distance between the upper electrode and the mounting table in the etching of the hard mask layer ((b) process) is set to be larger than a distance between the upper electrode and the mounting table in the exposing of the resist mask to the active species of hydrogen ((a) process).
    Type: Application
    Filed: September 11, 2013
    Publication date: August 27, 2015
    Inventors: Yoshihide Kihara, Hiromi Mochizuki, Masanobu Honda, Masaya Kawamata, Ken Kobayashi, Ryoichi Yoshida
  • Publication number: 20140363980
    Abstract: A semiconductor device manufacturing method is provided that includes etching with a plasma a multilayer film including a first film and a second film with differing dielectric constants alternately stacked on a substrate using a photoresist layer arranged on the multilayer film as a mask, and forming the multilayer film into a stepped configuration. The semiconductor device manufacturing method includes repetitively performing a first step of etching the first film using the photoresist layer as the mask; a second step of adjusting a pressure within a processing chamber to 6-30 Torr, generating the plasma by applying a first high frequency power for biasing and a second high frequency power for plasma generation to the lower electrode, and etching the photoresist layer using the generated plasma; and a third step of etching the second film using the photoresist layer and the first film as the mask.
    Type: Application
    Filed: February 5, 2013
    Publication date: December 11, 2014
    Inventors: Masaya Kawamata, Masanobu Honda
  • Publication number: 20140193977
    Abstract: A plasma etching apparatus includes a processing chamber; a holding unit for holding the substrate within the processing chamber; an electrode plate facing the holding unit; a plurality of supply parts arranged at different radial positions with respect to the substrate for supplying processing gas to a space between the holding unit and the electrode plate; a high frequency power supply that supplies high frequency power to the holding unit and/or the electrode plate to convert the processing gas supplied to the space into plasma; an adjustment unit that adjusts a supply condition for each of the supply parts; and a control unit that controls the adjustment unit to vary the supply condition between a position where an effect of diffusion of processing gas on an active species concentration distribution at the substrate is dominant and a position where an effect of flow of the processing gas is dominant.
    Type: Application
    Filed: August 28, 2012
    Publication date: July 10, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota
  • Publication number: 20130237053
    Abstract: A film forming method which generates metal ions from a metal target with a plasma in a processing chamber and attracts the metal ions with a bias to deposit a metal thin film on a target object wherein trenches are formed. The method includes: generating metal ions from a target and attracting the metal ions into a target object with a bias to form a base film in a trench; ionizing a rare gas with the bias in a state where no metal ion is generated and attracting the generated ions into the target object to etch the base film; and plasma sputtering the target to generate metal ions and attracting the metal ions into the object with a high frequency power for bias to deposit a main film as a metal film, while reflowing the main film by heating.
    Type: Application
    Filed: September 26, 2011
    Publication date: September 12, 2013
    Applicant: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Takashi Sakuma, Tatsuo Hatano, Osamu Yokoyama, Atsushi Gomi, Chiaki Yasumuro, Toshihiko Fukushima, Hiroyuki Toshima, Masaya Kawamata, Yasushi Mizusawa, Takara Kato
  • Publication number: 20130014895
    Abstract: A substrate processing apparatus can suppress an edge gas from being diffused toward a center region of a substrate. An upper electrode 200 serving as a gas introducing unit configured to supply one kind of gas or different kinds of gases to a center region and an edge region of the substrate includes a center gas inlet section 204 having a multiple number of gas holes 212 for a center gas; and an edge gas inlet section 206 having a multiplicity of gas holes 214 for an edge gas. By providing a gas hole formation plate 230 having gas holes 232 communicating with the gas holes 214 at a bottom surface of the edge gas inlet section 206, a vertical position of edge gas discharging openings can be adjusted.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 17, 2013
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masaya Kawamata, Masanobu Honda, Kazuhiro Kubota