Patents by Inventor Masaya Sakurai

Masaya Sakurai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11274371
    Abstract: Provided is a susceptor, capable of preventing occurrence of scratches on the back surface of a wafer attributable to lift pins, and reducing unevenness of the in-surface temperature distribution of the wafer. A susceptor according to one embodiment of this disclosure has a susceptor main body and a plate-shaped member, and when a wafer is conveyed, the front surface of the plate-shaped member ascended by lift pins supports the central part of the back surface of the wafer by surface contact. A separation space between the plate-shaped member and the susceptor main body, in a state in which the plate-shaped member is placed on the recessed part, enters further into the central side of the plate-shaped member, in a direction from the front surface to the back surface of the susceptor.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: March 15, 2022
    Assignee: SUMCO CORPORATION
    Inventors: Shoji Nogami, Naoyuki Wada, Masaya Sakurai, Takayuki Kihara
  • Patent number: 11264265
    Abstract: Provided is a lift pin for an epitaxial growth apparatus, which can prevent the back surface of a silicon wafer from being damaged by the lift pin, reduce emission of dust due to the rubbing of the lift pin against the wall surface of a through hole in a susceptor, and prevent peeling of glassy carbon. The lift pin has a straight trunk part to be inserted through the through hole; a head part to be made to abut a silicon wafer; and a cover part covering at least a top of the head part. The straight trunk part and the head part are made of a porous body, the cover part is made of a carbon-based covering material, and at least part of voids of the porous body of the head part is filled with the cover part.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 1, 2022
    Assignee: SUMCO CORPORATION
    Inventor: Masaya Sakurai
  • Patent number: 11208718
    Abstract: An epitaxial growth device includes; a chamber; a susceptor; a supporting shaft, having a main column located coaxially with the center of the susceptor and supporting arms; and a lift pin, at least the surface layer region of the lift pin is made of a material having a hardness lower than the susceptor, the lift pin has a straight trunk part upper region configured to pass through the through-hole of the susceptor and having a surface roughness of from not less than 0.1 ?m to not more than 0.3 ?m, and the lift pin has a straight trunk part lower region configured to pass through the through-hole of the supporting arm and having a surface roughness of from not less than 1 ?m to not more than 10 ?m.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: December 28, 2021
    Assignee: SUMCO CORPORATION
    Inventor: Masaya Sakurai
  • Publication number: 20190355612
    Abstract: Provided is a lift pin for an epitaxial growth apparatus, which can prevent the back surface of a silicon wafer from being damaged by the lift pin, reduce emission of dust due to the rubbing of the lift pin against the wall surface of a through hole in a susceptor, and prevent peeling of glassy carbon. The lift pin has a straight trunk part to be inserted through the through hole; a head part to be made to abut a silicon wafer; and a cover part covering at least a top of the head part. The straight trunk part and the head part are made of a porous body, the cover part is made of a carbon-based covering material, and at least part of voids of the porous body of the head part is filled with the cover part.
    Type: Application
    Filed: December 19, 2017
    Publication date: November 21, 2019
    Applicant: SUMCO CORPORATION
    Inventor: Masaya SAKURAI
  • Publication number: 20180135166
    Abstract: An epitaxial growth device includes; a chamber; a susceptor; a supporting shaft, having a main column located coaxially with the center of the susceptor and supporting arms; and a lift pin, at least the surface layer region of the lift pin is made of a material having a hardness lower than the susceptor, the lift pin has a straight trunk part upper region configured to pass through the through-hole of the susceptor and having a surface roughness of from not less than 0.1 ?m to not more than 0.3 ?m, and the lift pin has a straight trunk part lower region configured to pass through the through-hole of the supporting arm and having a surface roughness of from not less than 1 ?m to not more than 10 ?m.
    Type: Application
    Filed: April 25, 2016
    Publication date: May 17, 2018
    Applicant: SUMCO CORPORATION
    Inventor: Masaya SAKURAI
  • Publication number: 20180100235
    Abstract: Provided is a susceptor, capable of preventing occurrence of scratches on the back surface of a wafer attributable to lift pins, and reducing unevenness of the in-surface temperature distribution of the wafer. A susceptor according to one embodiment of this disclosure has a susceptor main body and a plate-shaped member, and when a wafer is conveyed, the front surface of the plate-shaped member ascended by lift pins supports the central part of the back surface of the wafer by surface contact. A separation space between the plate-shaped member and the susceptor main body, in a state in which the plate-shaped member is placed on the recessed part, enters further into the central side of the plate-shaped member, in a direction from the front surface to the back surface of the susceptor.
    Type: Application
    Filed: April 22, 2016
    Publication date: April 12, 2018
    Applicant: SUMCO CORPORATION
    Inventors: Shoji NOGAMI, Naoyuki WADA, Masaya SAKURAI, Takayuki KIHARA
  • Patent number: 8980001
    Abstract: A susceptor having a recessed portion and a ring-like step portion is arranged in a reaction chamber, and a plurality of through bores are formed in a bottom wall in the recessed portion excluding the step portion. A lift pin inserted in each of the through bores temporarily holds a wafer, then a lower surface of an outer peripheral portion of the wafer is mounted on the step portion to accommodate the wafer in the recessed portion, and a raw material gas is circulated in the reaction chamber to form an epitaxial layer on a wafer surface in the recessed portion. When forming the epitaxial layer on the wafer surface, the lift pin protrudes upwards from an upper surface of the bottom wall, and a height h of a top portion of the lift pin based on the upper surface of the bottom wall as a reference is set to the range from a position where the height h exceeds 0 mm to a position immediately before the lift pin comes into contact with the wafer.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 17, 2015
    Assignee: Sumco Corporation
    Inventors: Masaya Sakurai, Masayuki Ishibashi
  • Patent number: 8152919
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <100> direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100} wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: April 10, 2012
    Assignee: Sumco Corporation
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Publication number: 20110239931
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <100> direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100} wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 6, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Patent number: 7989073
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <110 > direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100 } wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 2, 2011
    Assignee: Sumco Corporation
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Publication number: 20110114014
    Abstract: A susceptor having a recessed portion and a ring-like step portion is arranged in a reaction chamber, and a plurality of through bores are formed in a bottom wall in the recessed portion excluding the step portion. A lift pin inserted in each of the through bores temporarily holds a wafer, then a lower surface of an outer peripheral portion of the wafer is mounted on the step portion to accommodate the wafer in the recessed portion, and a raw material gas is circulated in the reaction chamber to form an epitaxial layer on a wafer surface in the recessed portion. When forming the epitaxial layer on the wafer surface, the lift pin protrudes upwards from an upper surface of the bottom wall, and a height h of a top portion of the lift pin based on the upper surface of the bottom wall as a reference is set to the range from a position where the height h exceeds 0 mm to a position immediately before the lift pin comes into contact with the wafer.
    Type: Application
    Filed: July 24, 2009
    Publication date: May 19, 2011
    Applicant: SUMCO CORPORATION
    Inventors: Masaya Sakurai, Masayuki Ishibashi
  • Publication number: 20080057323
    Abstract: An epitaxial silicon wafer is provided in which an epitaxial layer is grown on a silicon wafer having a plane inclined from a {110} plane of a silicon single crystal as a main surface. In the silicon wafer for growing the epitaxial layer thereon, an inclination angle azimuth of the {110} plane is in the range of 0 to 45 degrees as measured from a <100> orientation parallel to the {110} plane toward a <110> direction. With such an arrangement, LPDs of 100 nm or less can be measured from a {110} wafer that has a carrier mobility (including the hole and electron mobilities) higher than that of a {100} wafer. Also, surface roughness degradation in the {110} wafer can be suppressed. Also, the surface state of the {110} wafer can be measured. Further, a quality evaluation can be performed on the {110} wafer.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 6, 2008
    Applicant: SUMCO CORPORATION
    Inventors: Takayuki Dohi, Shinji Nakahara, Masaya Sakurai, Masato Sakai
  • Patent number: 5641113
    Abstract: Solder joints are formed on external electrodes of a semiconductor device, such as a ball grid array package or flip chip or the like, and higher solder joints are formed on the external electrodes. Each solder joint consists of a plurality of solder bumps, such as a first solder bump and a second solder bump. The process includes the steps of forming a first solder bump on an electrode, the electrode being electrically connected with a terminal of an electronic circuit, applying a first non-conductive material onto the first solder bump so as to encompass with the first non-conductive material the exposed area of the first solder bump except for a top portion of the first solder bump, and forming a second solder bump on the top portion of the first solder bump. A semiconductor device having solder joints higher than the single greatest possible solder ball for a given pitch and pad area is fabricated.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 24, 1997
    Assignee: OKI Electronic Industry Co., Ltd.
    Inventors: Motoaki Somaki, Masaya Sakurai