Patents by Inventor Masaya Taki

Masaya Taki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180058962
    Abstract: In a sensor device, microcomputers acquire detection signals from plural sensor sections. A first signal line includes a main line and a sub line, and is capable of bidirectional communication between the sensor section and the microcomputers. A second signal line includes a main line and a sub line, and is capable of bidirectional communication between the sensor section and the microcomputers. A trigger signal is transmitted to the sensor section from the first microcomputer via the main line. A trigger signal is transmitted to the sensor section from the second microcomputer via the main line. Detection of steering torque can be continued in the occurrence of an abnormality in part of the sensor sections or microcomputers.
    Type: Application
    Filed: August 24, 2017
    Publication date: March 1, 2018
    Inventors: Koichi NAKAMURA, Masaya TAKI
  • Patent number: 9878736
    Abstract: A communication system includes at least one sensor apparatus including at least one sensing element and a transmission circuit, and a microcomputer including a reception circuit and a differential calculator. The sensing element detects a sensor value indicating a physical quantity of a detection target, and the transmission circuit transmits, as a digital signal, a sensor signal including information indicative of the sensor value at a predetermined transmission cycle. The reception circuit receives the sensor signal through a signal line and updates last time sensor value with present time sensor value. The differential calculator calculates, at a predetermined calculation cycle, a time differential value by performing a time differential calculation to the updated using time information provided separate from the sensor value.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: January 30, 2018
    Assignee: DENSO CORPORATION
    Inventors: Masaya Taki, Toshimitsu Sakai, Shuji Kuramitsu, Kouichi Nakamura, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20170291640
    Abstract: In a rotation detecting apparatus, a sensor includes a sensor element outputting a measurement value representing rotation of a detection target, and a circuit module. The circuit module includes a rotational angle calculator calculating, based on the measurement value, rotational angle information indicative of a rotational angle of the detection target. The rotational angle calculator generates a rotational angle signal including the rotational angle information. The circuit module includes a rotation number calculator calculating, based on the measurement value, rotation number information representing the number of rotations of the detection target. The rotation number calculator generates a rotation number signal including the rotation number information. An output unit outputs, as an output signal, a series of the rotational angle signal and the rotation number signal.
    Type: Application
    Filed: April 4, 2017
    Publication date: October 12, 2017
    Inventors: Toshihiro Fujita, Hideki Kabune, Katsuhiko Hayashi, Takaharu Kozawa, Shuhei Miyachi, Koichi Nakamura, Yuki Watanabe, Atsuko Oka, Shuji Kuramitsu, Toshimitsu Sakai, Masaya Taki
  • Patent number: 9787318
    Abstract: A signal control device includes: a terminal of an input signal; a capacitor between the terminal and a reference potential; a charge/discharge circuit having a switch for switching connection between the charge/discharge circuit and the capacitor; an AD conversion circuit digitally converting an analog voltage in the capacitor; a switch control circuit controlling the switch and an AD conversion timing; a control arithmetic operation device performing a control arithmetic operation using an AD conversion value; and a malfunction determination device determining a terminal malfunction when the AD conversion value is not within a range.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 10, 2017
    Assignee: DENSO CORPORATION
    Inventor: Masaya Taki
  • Patent number: 9774442
    Abstract: A communication device includes: a plurality of sensors, each of which includes at least one sensor element that detects information relating to a single detection target and an output circuit that generates an output signal based on a detection signal of the sensor element and transmits the output signal; and a controller that acquires the output signal. One of the sensors transmits the output signal to the controller at an output timing that is shifted, by a predetermined period shorter than a length of one period of the output signal, from another output timing when another one of the sensors transmits the output signal.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: September 26, 2017
    Assignee: DENSO CORPORATION
    Inventors: Takaharu Kozawa, Hideki Kabune, Toshihiro Fujita, Katsuhiko Hayashi, Kouichi Nakamura, Shuji Kuramitsu, Toshimitsu Sakai, Masaya Taki
  • Publication number: 20170155400
    Abstract: A signal control device includes: a terminal of an input signal; a capacitor between the terminal and a reference potential; a charge/discharge circuit having a switch for switching connection between the charge/discharge circuit and the capacitor; an AD conversion circuit digitally converting an analog voltage in the capacitor; a switch control circuit controlling the switch and an AD conversion timing; a control arithmetic operation device performing a control arithmetic operation using an AD conversion value; and a malfunction determination device determining a terminal malfunction when the AD conversion value is not within a range.
    Type: Application
    Filed: November 10, 2016
    Publication date: June 1, 2017
    Inventor: Masaya Taki
  • Publication number: 20170072991
    Abstract: If abnormalities of the sensor part are detected, the power-source control section temporarily stops the electric power supply from the sensor power source to the sensor part so that the sensor power source voltage Vs which is the voltage between the sensor power source and the sensor part falls. In addition, after electric power supply to the sensor part resumes, and the sensor part is recovered from the abnormalities, then, the power source control section continues the electric power supply from the sensor power source to the sensor part. When the sensor part is not recovered from the abnormalities, the power source control section stops the electric power supply from the sensor power source to the sensor part.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 16, 2017
    Inventors: Katsuhiko Hayashi, Takaharu Kozawa, Shuji Kuramitsu, Kouichi Nakamura, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20170050670
    Abstract: A sensor device includes a main sensor, a sub sensor, and an Electronic Control Unit (ECU). The ECU has a torque calculator that sets, as a steering torque, a main steering torque that is calculated based on a main sensor signal when a main output signal is normal. During a transition period between an abnormality detection and an abnormality establishment regarding the main output signal, the torque calculator calculates the steering torque based on (i) a sub steering torque calculated based on a sub sensor signal and (ii) a prior-to-abnormality-detection main steering torque. In such manner, even when abnormality is detected in a part of the sensor signals, a fluctuation of the steering torque due to, or accompanying, the switching of the steering torque calculation to a normal signal only calculation is prevented.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 23, 2017
    Inventors: Shuji Kuramitsu, Katsuhiko Hayashi, Takaharu Kozawa, Kouichi Nakamura, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20170029015
    Abstract: A sensor device includes sensors and an Electronic Control Unit (ECU). The sensors include sensor elements, a signal comparator, and a signal transmitter. The signal comparator compares a first main detection value from one of the sensor elements, and a first sub detection value from the other of the sensor elements. When the first main detection value matches the first sub detection value, the signal transmitter generates and transmits an output signal that includes a first main signal corresponding to the first main detection value without including a first sub signal corresponding to the first sub detection value. In such manner, the responsiveness of the sensor device may be improved, without deteriorating a reliability of the output signals from the sensor sections.
    Type: Application
    Filed: July 26, 2016
    Publication date: February 2, 2017
    Inventors: Koutarou Nakashima, Shuji Kuramitsu, Kouichi Nakamura, Masaya Taki, Toshimitsu Sakai, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20170029022
    Abstract: A sensor device includes a plurality of sensor elements and an output circuit in one sensor part, and a correction value calculator in an ECU, which obtains output signals from the sensor part and calculates an offset correction value based on a plurality of signal values that correspond to a detection value when a calculability condition is satisfied. The ECU also includes a control calculator that performs a calculation based on the corrected signal values that have been corrected by the offset correction value. Therefore, the offset correction value is calculated in view of an aging and an accuracy variation of the components used in the sensor device. In such manner, the detection value is appropriately corrected for the calculation.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventors: Kouichi Nakamura, Katsuhiko Hayashi, Takaharu Kozawa, Shuji Kuramitsu, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20170029016
    Abstract: A sensor device includes two sensor parts and an ECU. An output division of one of the two sensor parts stops output of an output signal when a detected internal abnormality is a first abnormality. Further, when the detected internal abnormality is a second abnormality that is different from the first abnormality, the output division controls an abnormality signal to take a value indicative of the second abnormality. An abnormality determiner determines either of a signal obtainment abnormality or the first abnormality of the sensor part when the output signal is not obtained from the one of the sensor parts, or determines the second abnormality of the one of the sensor parts when the obtained output signal includes the abnormality signal having a value indicative of the second abnormality. Such determination, thus, enables the abnormality determiner to classify an abnormality caused in the sensor parts.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 2, 2017
    Inventors: Takaharu Kozawa, Shuji Kuramitsu, Kouichi Nakamura, Masaya Taki, Toshimitsu Sakai, Katsuhiko Hayashi
  • Publication number: 20160362137
    Abstract: A communication system includes a sensor apparatus, which includes sensing elements and a transmission circuit, and a microcomputer, which includes a reception circuit, a difference calculator, and a differential calculator. The transmission circuit shifts a transmission time point of one of sensor signals including sensor value detected by one of the sensing elements by a predetermined period with respect to a transmission time point of another one of sensor signals including sensor value detected by another one of the sensing elements. The predetermined period is set shorter than a transmission cycle of the transmission circuit. The difference calculator calculates a difference value so that an offset error among the sensing elements is compensated or a fluctuation caused by a variation in slopes of output characteristics of the sensing elements is reduced.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Inventors: Masaya Taki, Toshimitsu Sakai, Kouichi Nakamura, Shuji Kuramitsu, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20160362129
    Abstract: A communication system includes at least one sensor apparatus including at least one sensing element and a transmission circuit, and a microcomputer including a reception circuit and a differential calculator. The sensing element detects a sensor value indicating a physical quantity of a detection target, and the transmission circuit transmits, as a digital signal, a sensor signal including information indicative of the sensor value at a predetermined transmission cycle. The reception circuit receives the sensor signal through a signal line and updates last time sensor value with present time sensor value. The differential calculator calculates, at a predetermined calculation cycle, a time differential value by performing a time differential calculation to the updated using time information provided separate from the sensor value.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Inventors: Masaya Taki, Toshimitsu Sakai, Shuji Kuramitsu, Kouichi Nakamura, Takaharu Kozawa, Katsuhiko Hayashi
  • Publication number: 20160339946
    Abstract: A sensor device includes a sensor section having a plurality of sensor elements sensing a physical quantity regarding a magnetic flux collecting module, an output circuit generating and outputting an output signal including data signals respectively corresponding to sensing values from the sensor elements, and an ECU obtaining the output signal. The ECU includes an abnormality determiner identifying an abnormal sensor element. When at least two of the plurality of sensor sections respectively have at least one normal sensor element, a sub-sensor section transmits the output signal therefrom to the ECU at a shifted output timing from an output timing of the output signal from a main sensor section. The amount of such a shift of the output timing is shorter than one signal cycle of the output signal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Shuji Kuramitsu, Katsuhiko Hayashi, Takaharu Kozawa, Koichi Nakamura, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160339948
    Abstract: A sensor device includes a first sensor section and a second sensor section, and the first sensor section has sensor elements and an output circuit for generating and transmitting an output signal including signals that respectively correspond to sensing values from the two sensor elements, and the second sensor section has sensor elements and an output circuit for generating and transmitting an output signal including signals that respectively correspond to sensing values from the two sensor elements. The sensor device further includes an ECU that has an abnormality determiner for determining abnormality of the sensor sections, and a calculator, thereby enabling a continuation of abnormality monitoring of a normal sensor section, even when a part of the sensor sections is abnormal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Koichi Nakamura, Katsuhiko Hayashi, Takaharu Kozawa, Shuji Kuramitsu, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160339945
    Abstract: A sensor device including a first output circuit generating and outputting a first output signal that is generated as a signal sequence from a first main signal based on a detection value of a first main sensor element to a first sub signal based on a detection value of a first sub sensor element, a second output circuit generating and outputting a second output signal that is generated as a signal sequence from a second main signal based on a detection value of a second main sensor element to a second sub signal based on a detection value of a second sub sensor element, and an abnormality determiner determining abnormality of the device based on the first output signal and the second output signal.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Takaharu Kozawa, Shuji Kuramitsu, Koichi Nakamura, Katsuhiko Hayashi, Masaya Taki, Toshimitsu Sakai
  • Publication number: 20160294539
    Abstract: A communication device includes: a plurality of sensors, each of which includes at least one sensor element that detects information relating to a single detection target and an output circuit that generates an output signal based on a detection signal of the sensor element and transmits the output signal; and a controller that acquires the output signal. One of the sensors transmits the output signal to the controller at an output timing that is shifted, by a predetermined period shorter than a length of one period of the output signal, from another output timing when another one of the sensors transmits the output signal.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 6, 2016
    Inventors: Takaharu Kozawa, Hideki Kabune, Toshihiro Fujita, Katsuhiko Hayashi, Kouichi Nakamura, Shuji Kuramitsu, Toshimitsu Sakai, Masaya Taki