Patents by Inventor Masayoshi Kusunoki

Masayoshi Kusunoki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150533
    Abstract: A method for producing a polytetrafluoroethylene particle, which includes subjecting tetrafluoroethylene to suspension polymerization in an aqueous medium to prepare a suspension-polymerized particle of polytetrafluoroethylene, washing and then crushing the suspension-polymerized particle or crushing the suspension-polymerized particle with washing to prepare a crushed particle, dehydrating the crushed particle to prepare a crushed particle having a water content of 40% by mass or less, and subjecting the dehydrated crushed particle to heat treatment to produce a polytetrafluoroethylene particle.
    Type: Application
    Filed: December 29, 2023
    Publication date: May 9, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takayuki TANAKA, Masayoshi Miyamoto, Tomoki Minamiyama, Takeki Kusunoki, Tokahiro Taira, Takuya Yamabe, Hirotoshi Yoshida, Taketo Kato, Taku Yamanaka, Mitsuo Tsukamoto
  • Publication number: 20240150505
    Abstract: A method for producing a polytetrafluoroethylene powder, which includes subjecting tetrafluoroethylene to suspension polymerization in an aqueous medium to prepare a suspension-polymerized particle of non melt-processible polytetrafluoroethylene, drying the suspension-polymerized particle to prepare a dry particle, subjecting the dry particle to fluorine radical treatment to prepare a fluorine radical-treated particle, and crushing the fluorine radical-treated particle to produce a polytetrafluoroethylene powder. Also disclosed is a polytetrafluoroethylene formed article obtained by forming the polytetrafluoroethylene powder, as well as a polytetrafluoroethylene compression-molded article obtained by compression molding the polytetrafluoroethylene powder.
    Type: Application
    Filed: December 27, 2023
    Publication date: May 9, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takahiro TAIRA, Kazuhiro Mishima, Takayuki Tanaka, Takeki Kusunoki, Masayoshi Miyamoto, Tomoki Minamiyama, Mitsuo Tsukamoto, Kenji Ichikawa, Takuya Yamabe, Hirotoshi Yoshida, Taketo Kato, Taku Yamanaka
  • Patent number: 11241757
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 8, 2022
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Publication number: 20190232422
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro ATSUMI, Koji KUNO, Masayoshi KUSUNOKI, Tatsuya SUZUKI, Kenshi FUKUMITSU, Fumitsugu FUKUYO
  • Patent number: 10293433
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: May 21, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Publication number: 20160368085
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Kazuhiro ATSUMI, Koji KUNO, Masayoshi KUSUNOKI, Tatsuya SUZUKI, Kenshi FUKUMITSU, Fumitsugu FUKUYO
  • Patent number: 9511449
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: December 6, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Patent number: 9352414
    Abstract: A laser processing method having a displacement acquiring step of acquiring a displacement between a point on the cutting line and one end of the cutting line in the object while irradiating the object with a second laser beam, converged by a lens, for measuring the displacement of a main surface of the object; and a position setting step of setting an initial position for holding the lens with respect to the main surface of the object according to the acquired displacement, and holding the lens at thus set initial position.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: May 31, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki
  • Patent number: 8993922
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam is provided. This laser processing method comprises a displacement acquiring step (S07 to S11) of irradiating an object to be processed with a rangefinding laser beam for measuring a displacement of a main surface of the object while converging the laser beam with a lens and acquiring the displacement of the main surface along a line to cut while detecting reflected light reflected by the main surface in response to the irradiation; and moves the processing objective lens and the object relative to each other along the main surface, while adjusting the gap between the processing objective lens and the surface according to the displacement acquired by the displacement acquiring step, thereby forming the modified region along the line to cut.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 31, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki
  • Publication number: 20140097163
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 10, 2014
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro ATSUMI, Koji KUNO, Masayoshi KUSUNOKI, Tatsuya SUZUKI, Kenshi FUKUMITSU, Fumitsugu FUKUYO
  • Patent number: 8624153
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: January 7, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Patent number: 7626746
    Abstract: A shutter unit capable of preventing the scattering of the laser beam upon closing the optical path of the laser beam and capable of being miniaturized, and a laser processing device employing such a shutter unit. In a shutter unit 1, when the optical path of the laser beam L is opened, a rotating member 57 is rotated around an axis line ?, and an opening 61 is positioned on an optical axis ? so as to pass the laser beam L therethrough. Meanwhile, when the optical path of the laser beam L is closed, the rotating member 57 is rotated and a reflective surface 62 is positioned on the optical axis ? so as to reflect the laser beam L. Here, since the reflected laser beam L is absorbed by an optical absorption member 63, it is possible to prevent the scattering of the laser beam L when the optical path of the laser beam L is closed.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: December 1, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Norio Kurita, Tetsuya Osajima, Masayoshi Kusunoki, Tatsuya Suzuki, Toshimitsu Wakuda
  • Publication number: 20080251506
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided. This laser processing method comprises a displacement acquiring step (S06 and S07) of acquiring a displacement between a point on the line to cut and one end of the line to cut in the object while irradiating the object with a second laser beam, converged by a lens, for measuring the displacement of a main surface of the object; and a position setting step (S08 and S09) of setting an initial position for holding the lens with respect to the main surface of the object according to the acquired displacement, and holding the lens at thus set initial position.
    Type: Application
    Filed: December 13, 2004
    Publication date: October 16, 2008
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki
  • Publication number: 20080218735
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam in end parts of an object to be processed is provided.
    Type: Application
    Filed: December 13, 2004
    Publication date: September 11, 2008
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki, Kenshi Fukumitsu, Fumitsugu Fukuyo
  • Publication number: 20080037003
    Abstract: A laser processing method which can efficiently perform laser processing while minimizing the deviation of the converging point of a laser beam is provided. This laser processing method comprises a displacement acquiring step (S07 to S11) of irradiating an object to be processed with a rangefinding laser beam for measuring a displacement of a main surface of the object while converging the laser beam with a lens and acquiring the displacement of the main surface along a line to cut while detecting reflected light reflected by the main surface in response to the irradiation; and moves the processing objective lens and the object relative to each other along the main surface, while adjusting the gap between the processing objective lens and the surface according to the displacement acquired by the displacement acquiring step, thereby forming the modified region along the line to cut.
    Type: Application
    Filed: December 13, 2004
    Publication date: February 14, 2008
    Inventors: Kazuhiro Atsumi, Koji Kuno, Masayoshi Kusunoki, Tatsuya Suzuki
  • Publication number: 20070273950
    Abstract: A shutter unit capable of preventing the scattering of the laser beam upon closing the optical path of the laser beam and capable of being miniaturized, and a laser processing device employing such a shutter unit. In a shutter unit 1, when the optical path of the laser beam L is opened, a rotating member 57 is rotated around an axis line ?, and an opening 61 is positioned on an optical axis ? so as to pass the laser beam L therethrough. Meanwhile, when the optical path of the laser beam L is closed, the rotating member 57 is rotated and a reflective surface 62 is positioned on the optical axis ? so as to reflect the laser beam L. Here, since the reflected laser beam L is absorbed by an optical absorption member 63, it is possible to prevent the scattering of the laser beam L when the optical path of the laser beam L is closed.
    Type: Application
    Filed: November 4, 2004
    Publication date: November 29, 2007
    Inventors: Norio Kurita, Tetsuya Osajima, Masayoshi Kusunoki, Tatsuya Suzuki, Toshimitsu Wakuda