Patents by Inventor Masayoshi OSHIRO

Masayoshi OSHIRO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11899097
    Abstract: A distance measurement device of an embodiment includes a first device including a first reference signal source and a first transmitter-receiver, a second device including a second reference signal source and a second transmitter-receiver, and a calculation unit configured to calculate a distance between the first device and the second device. One of a first distance measurement signal and a second distance measurement signal is transmitted once or more, and another is transmitted twice or more. The calculation unit calculates the distance based on a total of three or more pieces of first phase information and second phase information acquired through transmission of the distance measurement signals three times or more in total, a first sampling period based on a first reference signal, and a second sampling period based on a second reference signal.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: February 13, 2024
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Shoji Ootaka, Masaki Nishikawa, Katsuya Nonin, Hiroshi Yoshida, Masayoshi Oshiro
  • Patent number: 11860264
    Abstract: A ranging apparatus of an embodiment is a ranging apparatus adopting communication type ranging by a phase detection scheme. The ranging apparatus including: a transmitting circuit configured to be able to transmit by a plurality of channels used for data communication and configured to transmit a transmission signal obtained by modulating transmission data; and a control circuit configured to control the transmission circuit to cause a plurality of continuous waves having mutually different frequencies to be generated in a same channel as continuous waves used for ranging by the phase detection scheme.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: January 2, 2024
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Hiroshi Yoshida, Masaki Nishikawa, Shoji Ootaka, Katsuya Nonin, Masayoshi Oshiro
  • Patent number: 11785548
    Abstract: A transmission apparatus according to an embodiment includes a power amplifier, an antenna switch, and a control circuit. The power amplifier amplifies and outputs a transmission signal. The antenna switch switches, among at least two or more antennas, an antenna configured to output the transmission signal from the power amplifier. The control circuit performs output power control of the power amplifier when the control circuit outputs to the antenna switch a switching control signal for switching the antenna.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: October 10, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventor: Masayoshi Oshiro
  • Patent number: 11573315
    Abstract: According to an embodiment, a first device includes: a first transceiver configured to transmit two or more first carrier signals using an output of a first reference signal source and to receive two or more second carrier signals; and a calculation unit, and a second device includes: a second transceiver configured to transmit the two or more second carrier signals using an output of a second reference signal source that operates independently of the first reference signal source and to receive the two or more first carrier signals. A frequency group of the two or more first carrier signals and a frequency group of the two or more second carrier signals are identical or substantially identical to each other, and the calculation unit calculates the distance between the first device and the second device based on a phase detection result obtained by receiving the first and second carrier signals.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: February 7, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Shoji Ootaka, Takayuki Kato, Masaki Nishikawa, Hiroshi Yoshida, Katsuya Nonin, Yoshiharu Nito, Masayoshi Oshiro
  • Patent number: 11560121
    Abstract: A first device includes: a first reference signal source; a first transmitting/receiving unit which transmits two or more first carrier signals and receives two or more second carrier signals using an output of the first reference signal source; and a calculating unit. A second device includes: a second reference signal source configured to be operated independently from the first reference signal source; and a second transmitting/receiving unit configured to transmit two or more second carrier signals and receive two or more first carrier signals using an output of the second reference signal source. A frequency group of two or more first carrier signals and a frequency group of two or more second carrier signals differ from each other. The calculating unit calculates a distance between the first device and the second device based on a phase detection result obtained by receiving the first and second carrier signals.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: January 24, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Shoji Ootaka, Tsuneo Suzuki, Hiroshi Yoshida, Masaki Nishikawa, Katsuya Nonin, Takayuki Kato, Yoshiharu Nito, Masayoshi Oshiro
  • Patent number: 11536824
    Abstract: A distance measuring apparatus according to an embodiment includes, a filter section configured to perform band limitation on a transmission signal and output the transmission signal, and to perform band limitation on a reception signal from an antenna section and output the reception signal, a distance measuring section configured to perform a distance measurement computation based on the transmission signal and the reception signal, and to obtain a delay of a signal passing through the filter section and perform calibration of the distance measurement computation, a signal interruption section configured to interrupt transmission of a signal between the filter section and the antenna section, and a control section configured to control the signal interruption section to interrupt the transmission of the signal during a period of the calibration.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 27, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Takayuki Kato, Shoji Ootaka, Tsuneo Suzuki, Masaki Nishikawa, Katsuya Nonin, Hiroshi Yoshida, Yoshiharu Nito, Masayoshi Oshiro
  • Patent number: 11333735
    Abstract: A wireless communication device includes a transmission section configured to output a calibration signal transmitted from a calibration antenna, a reception section configured to have input of a received signal from an antenna and obtain a baseband signal from the received signal, a correction phase calculation circuit configured to calculate a correction phase for correcting the baseband signal according to a deviation between a reception phase calculated based on the baseband signal obtained when the antenna receives the calibration signal and an ideal phase associated with the antenna, and a storage section configured to store the ideal phase and the correction phase.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: May 17, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Masayoshi Oshiro
  • Publication number: 20220091253
    Abstract: A distance measurement device of an embodiment includes a first device including a first reference signal source and a first transmitter-receiver, a second device including a second reference signal source and a second transmitter-receiver, and a calculation unit configured to calculate a distance between the first device and the second device. One of a first distance measurement signal and a second distance measurement signal is transmitted once or more, and another is transmitted twice or more. The calculation unit calculates the distance based on a total of three or more pieces of first phase information and second phase information acquired through transmission of the distance measurement signals three times or more in total, a first sampling period based on a first reference signal, and a second sampling period based on a second reference signal.
    Type: Application
    Filed: March 12, 2021
    Publication date: March 24, 2022
    Inventors: Shoji Ootaka, Masaki Nishikawa, Katsuya Nonin, Hiroshi Yoshida, Masayoshi Oshiro
  • Publication number: 20220046545
    Abstract: A transmission apparatus according to an embodiment includes a power amplifier, an antenna switch, and a control circuit. The power amplifier amplifies and outputs a transmission signal. The antenna switch switches, among at least two or more antennas, an antenna configured to output the transmission signal from the power amplifier. The control circuit performs output power control of the power amplifier when the control circuit outputs to the antenna switch a switching control signal for switching the antenna.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventor: Masayoshi Oshiro
  • Patent number: 11199622
    Abstract: A distance measurement apparatus of an embodiment includes a first device provided in a vehicle and a second device provided in a key-fob, and calculates a distance between the vehicle and the key-fob based on carrier phase detection. In at least one of the first device and the second device, transmission powers at which a plurality of first distance measurement signals are respectively transmitted when the key-fob is inside the vehicle are set to be lower than transmission powers at which a plurality of first distance measurement signals are respectively transmitted when the key-fob is outside the vehicle.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: December 14, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Hiroshi Yoshida, Shoji Ootaka, Katsuya Nonin, Masaki Nishikawa, Masayoshi Oshiro
  • Patent number: 11191022
    Abstract: A transmission apparatus according to an embodiment includes a power amplifier, an antenna switch, and a control circuit. The power amplifier amplifies and outputs a transmission signal. The antenna switch switches, among at least two or more antennas, an antenna configured to output the transmission signal from the power amplifier. The control circuit performs output power control of the power amplifier when the control circuit outputs to the antenna switch a switching control signal for switching the antenna.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: November 30, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Masayoshi Oshiro
  • Publication number: 20210286065
    Abstract: A ranging apparatus of an embodiment is a ranging apparatus adopting communication type ranging by a phase detection scheme. The ranging apparatus including: a transmitting circuit configured to be able to transmit by a plurality of channels used for data communication and configured to transmit a transmission signal obtained by modulating transmission data; and a control circuit configured to control the transmission circuit to cause a plurality of continuous waves having mutually different frequencies to be generated in a same channel as continuous waves used for ranging by the phase detection scheme.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 16, 2021
    Inventors: Hiroshi Yoshida, Masaki Nishikawa, Shoji Ootaka, Katsuya Nonin, Masayoshi Oshiro
  • Publication number: 20210270956
    Abstract: A distance measurement apparatus of an embodiment includes a first device provided in a vehicle and a second device provided in a key-fob, and calculates a distance between the vehicle and the key-fob based on carrier phase detection. In at least one of the first device and the second device, transmission powers at which a plurality of first distance measurement signals are respectively transmitted when the key-fob is inside the vehicle are set to be lower than transmission powers at which a plurality of first distance measurement signals are respectively transmitted when the key-fob is outside the vehicle.
    Type: Application
    Filed: August 26, 2020
    Publication date: September 2, 2021
    Inventors: Hiroshi Yoshida, Shoji Ootaka, Katsuya Nonin, Masaki Nishikawa, Masayoshi Oshiro
  • Publication number: 20210088642
    Abstract: A distance measuring apparatus according to an embodiment includes, a filter section configured to perform band limitation on a transmission signal and output the transmission signal, and to perform band limitation on a reception signal from an antenna section and output the reception signal, a distance measuring section configured to perform a distance measurement computation based on the transmission signal and the reception signal, and to obtain a delay of a signal passing through the filter section and perform calibration of the distance measurement computation, a signal interruption section configured to interrupt transmission of a signal between the filter section and the antenna section, and a control section configured to control the signal interruption section to interrupt the transmission of the signal during a period of the calibration.
    Type: Application
    Filed: March 6, 2020
    Publication date: March 25, 2021
    Inventors: Takayuki Kato, Shoji Ootaka, Tsuneo Suzuki, Masaki Nishikawa, Katsuya Nonin, Hiroshi Yoshida, Yoshiharu Nito, Masayoshi Oshiro
  • Publication number: 20210088646
    Abstract: According to an embodiment, a first device includes: a first transceiver configured to transmit two or more first carrier signals using an output of a first reference signal source and to receive two or more second carrier signals; and a calculation unit, and a second device includes: a second transceiver configured to transmit the two or more second carrier signals using an output of a second reference signal source that operates independently of the first reference signal source and to receive the two or more first carrier signals. A frequency group of the two or more first carrier signals and a frequency group of the two or more second carrier signals are identical or substantially identical to each other, and the calculation unit calculates the distance between the first device and the second device based on a phase detection result obtained by receiving the first and second carrier signals.
    Type: Application
    Filed: March 6, 2020
    Publication date: March 25, 2021
    Inventors: Shoji Ootaka, Takayuki Kato, Masaki Nishikawa, Hiroshi Yoshida, Katsuya Nonin, Yoshiharu Nito, Masayoshi Oshiro
  • Publication number: 20210078537
    Abstract: A first device includes: a first reference signal source; a first transmitting/receiving unit which transmits two or more first carrier signals and receives two or more second carrier signals using an output of the first reference signal source; and a calculating unit. A second device includes: a second reference signal source configured to be operated independently from the first reference signal source; and a second transmitting/receiving unit configured to transmit two or more second carrier signals and receive two or more first carrier signals using an output of the second reference signal source. A frequency group of two or more first carrier signals and a frequency group of two or more second carrier signals differ from each other. The calculating unit calculates a distance between the first device and the second device based on a phase detection result obtained by receiving the first and second carrier signals.
    Type: Application
    Filed: March 6, 2020
    Publication date: March 18, 2021
    Inventors: Shoji Ootaka, Tsuneo Suzuki, Hiroshi Yoshida, Masaki Nishikawa, Katsuya Nonin, Takayuki Kato, Yoshiharu Nito, Masayoshi Oshiro
  • Publication number: 20210068057
    Abstract: A transmission apparatus according to an embodiment includes a power amplifier, an antenna switch, and a control circuit. The power amplifier amplifies and outputs a transmission signal. The antenna switch switches, among at least two or more antennas, an antenna configured to output the transmission signal from the power amplifier. The control circuit performs output power control of the power amplifier when the control circuit outputs to the antenna switch a switching control signal for switching the antenna.
    Type: Application
    Filed: February 26, 2020
    Publication date: March 4, 2021
    Inventor: Masayoshi Oshiro
  • Publication number: 20200081089
    Abstract: A wireless communication device includes a transmission section configured to output a calibration signal transmitted from a calibration antenna, a reception section configured to have input of a received signal from an antenna and obtain a baseband signal from the received signal, a correction phase calculation circuit configured to calculate a correction phase for correcting the baseband signal according to a deviation between a reception phase calculated based on the baseband signal obtained when the antenna receives the calibration signal and an ideal phase associated with the antenna, and a storage section configured to store the ideal phase and the correction phase.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 12, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Masayoshi OSHIRO
  • Patent number: 10432392
    Abstract: A frame synchronization method of an embodiment is disclosed. The method includes comparing a preamble arranged at a predetermined position in a received signal with a predetermined signal pattern to calculate a maximum preamble correlation value, using the maximum preamble correlation value to estimate a C/N ratio of the received signal, setting a correlation threshold for frame synchronization detection according to the estimated C/N ratio, and comparing an access address arranged at a predetermined position in the received signal with a predetermined signal pattern to calculate a preamble correlation value, and detecting timing at which the preamble correlation value first exceeds the set correlation threshold as a frame synchronization point.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: October 1, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Masayoshi Oshiro, Takashi Seki
  • Publication number: 20190296889
    Abstract: A frame synchronization method of an embodiment is disclosed. The method includes comparing a preamble arranged at a predetermined position in a received signal with a predetermined signal pattern to calculate a maximum preamble correlation value, using the maximum preamble correlation value to estimate a C/N ratio of the received signal, setting a correlation threshold for frame synchronization detection according to the estimated C/N ratio, and comparing an access address arranged at a predetermined position in the received signal with a predetermined signal pattern to calculate a preamble correlation value, and detecting timing at which the preamble correlation value first exceeds the set correlation threshold as a frame synchronization point.
    Type: Application
    Filed: September 5, 2018
    Publication date: September 26, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Masayoshi OSHIRO, Takashi SEKI