Patents by Inventor Masayoshi Tsukamoto

Masayoshi Tsukamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151898
    Abstract: An optical fiber bundle structure includes: plural optical fiber core wires; a crossing preventing member; and a grasping member. Further, the crossing preventing member has slits and the widths of the slits positioned at the respective sides are each equal to or larger than a difference between: a length of one side of a polygon circumscribing the plural optical fiber core wires at a hindmost end portion of the slits at the trailing end; and a length of one side of a polygon circumscribing the plural optical fiber core wires at the leading end.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 9, 2024
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kohei KAWASAKI, Ryuichi SUGIZAKI, Masayoshi TSUKAMOTO, Masanori TAKAHASHI, Shigehiro TAKASAKA, Koichi MAEDA
  • Publication number: 20240150505
    Abstract: A method for producing a polytetrafluoroethylene powder, which includes subjecting tetrafluoroethylene to suspension polymerization in an aqueous medium to prepare a suspension-polymerized particle of non melt-processible polytetrafluoroethylene, drying the suspension-polymerized particle to prepare a dry particle, subjecting the dry particle to fluorine radical treatment to prepare a fluorine radical-treated particle, and crushing the fluorine radical-treated particle to produce a polytetrafluoroethylene powder. Also disclosed is a polytetrafluoroethylene formed article obtained by forming the polytetrafluoroethylene powder, as well as a polytetrafluoroethylene compression-molded article obtained by compression molding the polytetrafluoroethylene powder.
    Type: Application
    Filed: December 27, 2023
    Publication date: May 9, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takahiro TAIRA, Kazuhiro Mishima, Takayuki Tanaka, Takeki Kusunoki, Masayoshi Miyamoto, Tomoki Minamiyama, Mitsuo Tsukamoto, Kenji Ichikawa, Takuya Yamabe, Hirotoshi Yoshida, Taketo Kato, Taku Yamanaka
  • Publication number: 20240150533
    Abstract: A method for producing a polytetrafluoroethylene particle, which includes subjecting tetrafluoroethylene to suspension polymerization in an aqueous medium to prepare a suspension-polymerized particle of polytetrafluoroethylene, washing and then crushing the suspension-polymerized particle or crushing the suspension-polymerized particle with washing to prepare a crushed particle, dehydrating the crushed particle to prepare a crushed particle having a water content of 40% by mass or less, and subjecting the dehydrated crushed particle to heat treatment to produce a polytetrafluoroethylene particle.
    Type: Application
    Filed: December 29, 2023
    Publication date: May 9, 2024
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Takayuki TANAKA, Masayoshi Miyamoto, Tomoki Minamiyama, Takeki Kusunoki, Tokahiro Taira, Takuya Yamabe, Hirotoshi Yoshida, Taketo Kato, Taku Yamanaka, Mitsuo Tsukamoto
  • Publication number: 20240142697
    Abstract: An optical fiber bundle structure includes: plural optical fiber core wires; a crossing preventing member; and a grasping member. Further, the crossing preventing member has slits and the widths of the slits positioned at the respective sides are each equal to or larger than a difference between: a length of one side of a polygon circumscribing the plural optical fiber core wires at a hindmost end portion of the slits at the trailing end; and a length of one side of a polygon circumscribing the plural optical fiber core wires at the leading end.
    Type: Application
    Filed: January 11, 2024
    Publication date: May 2, 2024
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kohei KAWASAKI, Ryuichi SUGIZAKI, Masayoshi TSUKAMOTO, Masanori TAKAHASHI, Shigehiro TAKASAKA, Koichi MAEDA
  • Publication number: 20240145151
    Abstract: Provided is a coil component including a core member and a wire wound around the core member, wherein a cross section of the core member perpendicular to a winding axis of the wire wound around the core member has a circumference shape comprising at least three first arcs and connecting lines connecting the at least three first arcs adjacent to each other, and each of the at least three first arcs has a predetermined radius and a predetermined central angle for closely contacting the wire and the core member.
    Type: Application
    Filed: October 31, 2023
    Publication date: May 2, 2024
    Applicant: TDK CORPORATION
    Inventors: Masayoshi SHIMAZAKI, Osamu OHHATA, Naoto TSUKAMOTO, Sena YOSHINO, Nobuo KITAJIMA, Masashi GOTOH
  • Publication number: 20240134130
    Abstract: A ferrule is formed with an optical fiber insertion hole into which an optical fiber is inserted, and includes a resin composition containing a thermoplastic resin and a filler, wherein a size of coarse particles originated from the filler is 50 ?m or less, or a size of aggregates originated from the filler is 50 ?m or less.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 25, 2024
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayoshi TSUKAMOTO, Takahiro MIURA, Masahiro HANDA
  • Patent number: 11940649
    Abstract: An optical fiber bundle structure includes: plural optical fiber core wires; a crossing preventing member; and a grasping member. Further, the crossing preventing member has slits and the widths of the slits positioned at the respective sides are each equal to or larger than a difference between: a length of one side of a polygon circumscribing the plural optical fiber core wires at a hindmost end portion of the slits at the trailing end; and a length of one side of a polygon circumscribing the plural optical fiber core wires at the leading end.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: March 26, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kohei Kawasaki, Ryuichi Sugizaki, Masayoshi Tsukamoto, Masanori Takahashi, Shigehiro Takasaka, Koichi Maeda
  • Patent number: 11930798
    Abstract: A fishing rod includes a hollow rod extending along a central axis; and a shaft member with an outer peripheral surface inclined relative to the central axis inserted into the rod from the one end, and that is supported by an inner peripheral surface of the rod at a support position on another end side of the one end in an axial direction along the central axis, wherein the inner peripheral surface of the rod has at least one convex portion protruding toward the central axis from a virtual curve between the support position and the one end position axially when drawing a virtual curve that is convex toward the central axis through the support position and the one end position at the end of the end side of the inner peripheral surface in an area radially outward from the outer peripheral surface of the shaft member.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: March 19, 2024
    Assignee: Globeride, Inc.
    Inventors: Yasuhiro Tsukamoto, Atsushi Saito, Masayoshi Nakao, Kenji Kato, Isao Oota
  • Publication number: 20240085639
    Abstract: An optical connector ferrule is a member in which an optical fiber is fixed inside a body section, and the distal-end side thereof forms a connection end surface for the optical fiber. An internal space in which the optical fiber is accommodated is formed inside the body section. The internal space runs through from the rear end to the distal end of the body section. An adhesive injection window that is open to the outside is formed in the upper surface of the body section. The adhesive injection window and the internal space are communicated inside the body section via a reduced-diameter section. In plan view, the area (area of the smallest section) of the reduced-diameter section is smaller than the open area of the adhesive injection window.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Takayuki Ando, Masayoshi Tsukamoto
  • Publication number: 20230011146
    Abstract: The present disclosure relates to an optical connector includes at least one optical fiber; and a lens element including at least one lens that couples light to an end face of the optical fiber. The distance FLh between the end face of the optical fiber and a vertex of the lens is expressed by the sum of the distance FL from the vertex of the lens to the focal point F positioned in a back face direction of the lens and the length ? between the end face of the optical fiber and the focal point F, and the length ? is longer than 10 ?m.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 12, 2023
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kengo WATANABE, Mitsuhiro IWAYA, Masayoshi TSUKAMOTO, Katsuki SUEMATSU
  • Patent number: 11550103
    Abstract: An optical connection component includes an optical fiber; a high relative refractive-index difference optical fiber that is fusion-spliced to the optical fiber and has a greater relative refractive-index difference to a cladding of a core than the optical fiber; and an accommodating member accommodating the entire length of the optical fiber and the high relative refractive-index difference optical fiber, and has a first end face on which an end face of the optical fiber on the side opposite to the fusion-spliced side is exposed to be substantially flush with the first end face, and a second end face on which an end face of the high relative refractive-index difference optical fiber on the side opposite to the fusion-spliced side is exposed to be substantially flush with the second end face. The optical fiber and the high relative refractive-index difference optical fiber are fixed to the accommodating member.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: January 10, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masanori Takahashi, Mitsuhiro Iwaya, Masayoshi Tsukamoto
  • Patent number: 11378735
    Abstract: A multi-core fiber includes: plural cores made of silica-based glass; and a cladding enclosing the plural cores and made of silica-based glass, the cladding having a refractive index lower than a maximum refractive index of the plural cores. Further, the multi-core fiber has a mode field diameter of 5.0 ?m or larger at a wavelength of 1100 nm, the multi-core fiber provides single-mode propagation at the wavelength of 1100 nm, the multi-core fiber has a bending loss of 1 dB/turn or less at the wavelength of 1100 nm when the multi-core fiber is bent at a radius of 2 mm, and the multi-core fiber has a crosstalk between cores of ?30 dB/km or less.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: July 5, 2022
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masanori Takahashi, Ryuichi Sugizaki, Masayoshi Tsukamoto
  • Publication number: 20220003921
    Abstract: A multicore fiber includes: n pieces of first core regions in a circular shape with a radius r1 that are arranged about points P11 to P1n, and that has a first core portion and a first cladding portion; a second core region in a circular shape with a radius R1 that is arranged about the point a1, and that has a second core portion and a second cladding portion; and a cladding region that is formed on an outer circumferences of the first core region and the second core region. Further, abutting surfaces that are flat surfaces abutting on each other are formed in portions on the outer circumferences of the first core region and the second core region.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masanori TAKAHASHI, Koichi MAEDA, Shinichi ARAI, Ryuichi SUGIZAKI, Masayoshi TSUKAMOTO
  • Publication number: 20220003924
    Abstract: An optical fiber bundle structure includes: plural optical fiber core wires; a crossing preventing member; and a grasping member. Further, the crossing preventing member has slits and the widths of the slits positioned at the respective sides are each equal to or larger than a difference between: a length of one side of a polygon circumscribing the plural optical fiber core wires at a hindmost end portion of the slits at the trailing end; and a length of one side of a polygon circumscribing the plural optical fiber core wires at the leading end.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kohei KAWASAKI, Ryuichi SUGIZAKI, Masayoshi TSUKAMOTO, Masanori TAKAHASHI, Shigehiro TAKASAKA, Koichi MAEDA
  • Publication number: 20210208338
    Abstract: An optical connection component includes an optical fiber; a high relative refractive-index difference optical fiber that is fusion-spliced to the optical fiber and has a greater relative refractive-index difference to a cladding of a core than the optical fiber; and an accommodating member accommodating the entire length of the optical fiber and the high relative refractive-index difference optical fiber, and has a first end face on which an end face of the optical fiber on the side opposite to the fusion-spliced side is exposed to be substantially flush with the first end face, and a second end face on which an end face of the high relative refractive-index difference optical fiber on the side opposite to the fusion-spliced side is exposed to be substantially flush with the second end face. The optical fiber and the high relative refractive-index difference optical fiber are fixed to the accommodating member.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masanori TAKAHASHI, Mitsuhiro IWAYA, Masayoshi TSUKAMOTO
  • Patent number: 10061095
    Abstract: An indoor cable is composed of an optical fiber core, tension members, an outer sheath, and so forth. The optical fiber core and the tension members are integrated by the outer sheath. The outer sheath is composed of a transparent material. The optical fiber core includes a glass wire and a resin coating (a primary resin layer and a secondary resin layer). The optical fiber core does not have a colored layer that is conventionally formed on the outer periphery of the resin coating layer. That is, the optical fiber core is composed entirely of transparent materials. On both sides of the optical fiber core, separate from the optical fiber core, is arranged a pair of tension members. The tension members are composed of transparent materials.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: August 28, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Publication number: 20170299832
    Abstract: An optical fiber cable is composed of an optical fiber core, a tension member, an outer sheath, and so forth. The optical fiber core includes a glass wire and a resin-coated part, which is further coated by a transparent member on its outer periphery. The transparent member is, for example, urethane acrylate, PVC, nylon, and so forth. The transparent member preferably has a total light transmittance, defined by JIS K7361-1, of 60% or higher. The reason is that when the total light transmittance is less than 60%, the color tone of the optical fiber core (transparent member) becomes intense and stands out. Additionally, it is preferable that the total light transmittance of the transparent member is 80% or more.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 19, 2017
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Publication number: 20170299833
    Abstract: An indoor cable is composed of an optical fiber core, tension members, an outer sheath, and so forth. The optical fiber core and the tension members are integrated by the outer sheath. The outer sheath is composed of a transparent material. The optical fiber core includes a glass wire and a resin coating (a primary resin layer and a secondary resin layer). The optical fiber core does not have a colored layer that is conventionally formed on the outer periphery of the resin coating layer. That is, the optical fiber core is composed entirely of transparent materials. On both sides of the optical fiber core, separate from the optical fiber core, is arranged a pair of tension members. The tension members are composed of transparent materials.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 19, 2017
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Patent number: 9604742
    Abstract: Provided is a method for packing a cable having a static friction coefficient of 0.15 or more and 0.50 or less, a dynamic friction coefficient of 0.10 or more and 0.40 or less and a bending rigidity of 60 gf or more and 350 gf or less. The method includes the steps of: (1) winding the cable into a figure-of-eight shape to form a cylindrical cable bundle, (2) winding a wrapping film as a restraining member, which restrains the cable bundle, around an outer circumferential portion of the cable bundle, (3) winding a wrapping film as a closing member which closes openings on both ends of the cable bundle, and (4) housing the cable bundle being wound with the restraining member and the closing member in a housing container.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: March 28, 2017
    Assignees: FURUKAWA ELECTRIC CO., LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tetsuya Yasutomi, Masayoshi Tsukamoto, Noboru Okada, Shigeo Kimura, Shigeo Kihara, Keiichiro Sugimoto, Shinichi Niwa
  • Patent number: 8842955
    Abstract: An optical fiber cable enabling further reduction of possibilities of disconnection of optical fiber due to, for instance, cicada oviposition. The optical fiber cable (10) is provided with: an optical fiber core (1); a tension member (2), which is arranged in parallel to the optical fiber core (1) on one side or on the both sides of the optical fiber core (1); and a sheath (3) which integrally covers the optical fiber core (1) and the tension member (2). At least one portion of the sheath (3) is composed of a polymeric material having a yield point stress of 12 MPa or higher.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: September 23, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino, Noboru Okada