Patents by Inventor Masayuki Kii

Masayuki Kii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10082430
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: September 25, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa
  • Publication number: 20170356810
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 14, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideaki FUKUZAWA, Akihiko ENAMITO, Osamu NISHIMURA, Michiko HARA, Hiromi YUASA, Yoshihiko FUJI, Masayuki KII, Eizo FUJISAWA
  • Patent number: 9759618
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: September 12, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa
  • Patent number: 9488541
    Abstract: According to one embodiment, a pressure sensor includes: a base body; a sensor section; and a processing circuit. The sensor section includes: a transducing thin film; a first strain sensing element; and a second strain sensing element. The transducing thin film has a film surface and is flexible. The processing circuit is configured to output as an output signal at least one of a first signal obtained from the first strain sensing element upon application of external pressure to the transducing thin film and a second signal obtained from the second strain sensing element upon application of the external pressure to the transducing thin film.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: November 8, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Masatoshi Sakurai, Masayuki Kii, Yoshihiko Fuji, Michiko Hara, Yoshihiro Higashi, Kenji Otsu, Akiko Yuzawa, Kazuaki Okamoto
  • Patent number: 9383268
    Abstract: According to one embodiment, a strain sensor includes: a base; a strain sensing element; a magnetic field sensing element; and a processing unit. The strain sensing element includes a first magnetic layer having a first magnetization; a second magnetic layer having a second magnetization; and a first intermediate layer. In the strain sensing element an angle between a direction of the first magnetization and a direction of the second magnetization changes in accordance with a strain. The magnetic field sensing element includes a third magnetic layer having a third magnetization; a fourth magnetic layer having a fourth magnetization; and a second intermediate layer. In the magnetic field sensing an angle between a direction of the third magnetization and a direction of the fourth magnetization changes in accordance with a magnetic field.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 5, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Higashi, Hideaki Fukuzawa, Yoshihiko Fuji, Michiko Hara, Masayuki Kii, Akio Hori, Tomohiko Nagata
  • Publication number: 20150271586
    Abstract: According to one embodiment, a pressure sensor includes: a base body; a sensor section; and a processing circuit. The sensor section includes: a transducing thin film; a first strain sensing element; and a second strain sensing element. The transducing thin film has a film surface and is flexible. The processing circuit is configured to output as an output signal at least one of a first signal obtained from the first strain sensing element upon application of external pressure to the transducing thin film and a second signal obtained from the second strain sensing element upon application of the external pressure to the transducing thin film.
    Type: Application
    Filed: December 29, 2014
    Publication date: September 24, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideaki FUKUZAWA, Masatoshi SAKURAI, Masayuki KII, Yoshihiko FUJI, Michiko HARA, Yoshihiro HIGASHI, Kenji OTSU, Akiko YUZAWA, Kazuaki OKAMOTO
  • Patent number: 9000547
    Abstract: According to one embodiment, a strain sensor includes a substrate, a lid, a frame, and a sensing unit. The substrate has a first surface. The lid is provided on the first surface. The frame is provided between the substrate and the lid. The frame is nonconductive and includes a magnetic body. The sensing unit is provided inside the frame between the substrate and the lid, and includes a magnetoresistance effect element.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 7, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yusaku Asano, Kazuhito Higuchi, Takeshi Miyagi, Yoshihiro Higashi, Michiko Hara, Hideaki Fukuzawa, Masayuki Kii, Eizo Fujisawa
  • Publication number: 20150082919
    Abstract: According to one embodiment, a strain sensor includes: a base; a strain sensing element; a magnetic field sensing element; and a processing unit. The strain sensing element includes a first magnetic layer having a first magnetization; a second magnetic layer having a second magnetization; and a first intermediate layer. In the strain sensing element an angle between a direction of the first magnetization and a direction of the second magnetization changes in accordance with a strain. The magnetic field sensing element includes a third magnetic layer having a third magnetization; a fourth magnetic layer having a fourth magnetization; and a second intermediate layer. In the magnetic field sensing an angle between a direction of the third magnetization and a direction of the fourth magnetization changes in accordance with a magnetic field.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro HIGASHI, Hideaki FUKUZAWA, Yoshihiko FUJI, Michiko HARA, Masayuki KII, Akio HORI, Tomohiko NAGATA
  • Publication number: 20150069540
    Abstract: According to one embodiment, a strain sensor includes a substrate, a lid, a frame, and a sensing unit. The substrate has a first surface. The lid is provided on the first surface. The frame is provided between the substrate and the lid. The frame is nonconductive and includes a magnetic body. The sensing unit is provided inside the frame between the substrate and the lid, and includes a magnetoresistance effect element.
    Type: Application
    Filed: March 11, 2014
    Publication date: March 12, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yusaku ASANO, Kazuhito HIGUCHI, Takeshi MIYAGI, Yoshihiro HIGASHI, Michiko HARA, Hideaki FUKUZAWA, Masayuki KII, Eizo FUJISAWA
  • Patent number: 8973446
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa
  • Publication number: 20150047437
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hideaki FUKUZAWA, Akihiko ENAMITO, Osamu NISHIMURA, Michiko HARA, Hiromi YUASA, Yoshihiko FUJI, Masayuki KII, Eizo FUJISAWA
  • Publication number: 20130255393
    Abstract: According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
    Type: Application
    Filed: December 28, 2012
    Publication date: October 3, 2013
    Inventors: Hideaki Fukuzawa, Akihiko Enamito, Osamu Nishimura, Michiko Hara, Hiromi Yuasa, Yoshihiko Fuji, Masayuki Kii, Eizo Fujisawa
  • Patent number: 5641045
    Abstract: Balls to be moved radially outward by a centrifugal force are held in a clutch hub, and projections extending around the outer circumferences of the balls are united with a synchronizer ring. Those portions of the projections, which radially confront the balls, are formed with slopes for establishing an axial force to push the synchronizer ring away from the spline piece on the basis of the centrifugal force of the balls. Thus, the axial force for disengaging the synchronizer ring from a rotating member to be synchronized can be increased to prevent the chatter at a low number of revolution and to effectively eliminate the drag torque at a high number of revolution.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: June 24, 1997
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinji Ogawa, Masayuki Kii, Tomoyuki Kanou
  • Patent number: 5499703
    Abstract: An idler mass member is provided inside or outside a torque transmittance path including a clutch for connecting and disconnecting an engine side and a transmission side having a synchromesh. The idler mass member is detached from a power train when the clutch is disengaged and is brought into contact or engagement with a driven side of the power train when or before the clutch is moved to be engaged. Due to the idler mass member, a peak torque generated in the driven side at a rushed start of an automobile is decreased.
    Type: Grant
    Filed: October 22, 1993
    Date of Patent: March 19, 1996
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayuki Kii, Hiroaki Nimura, Mitsuhiro Umeyama