Patents by Inventor Masayuki Nashiki

Masayuki Nashiki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200127589
    Abstract: A motor has stator windings arranged on a circumference of a stator, a rotor with rotor magnetic poles provided by N- and S-poles, and rotor windings arranged in a circumferential direction of the rotor magnetic poles. Multiple-phase currents are supplied to the stator windings. A current is supplied to rotor windings. The multiple-phase currents include torque current components, which are arranged to be opposite in directions to torque current components of the current. By this mutually opposite-directional current arrangement, a magnetomotive force based on a sum of both torque current components becomes a local minimum. It is possible to reduce influence of the torque current components on the field magnetic fluxes of the motor. In the motor, circumferential magnetic flux components can be collected to an airgap and a portion therearound, so that a larger amount of torque can be obtained, and constant output control can be performed more easily.
    Type: Application
    Filed: December 1, 2017
    Publication date: April 23, 2020
    Inventor: Masayuki NASHIKI
  • Publication number: 20200099327
    Abstract: A motor is provided with stator windings arranged on a circumference of stator. Multiple-phase currents are supplied to the stator windings. A current is supplied to rotor windings. The multiple-phase currents include torque current components, which are arranged to be opposite in directions to torque current components of the current. By this mutually opposite-directional current arrangement, a sum of both torque current components results in a magnetomotive force of zero. It is also possible to reduce influence of the torque current components on the field magnetic fluxes of the motor. In the motor, circumferential magnetic flux components can be concentrated on an airgap and a portion near therearound, so that a larger amount of torque can be obtained, and constant output control can be performed more easily.
    Type: Application
    Filed: November 24, 2017
    Publication date: March 26, 2020
    Inventor: Masayuki NASHIKI
  • Publication number: 20190296594
    Abstract: A motor is provided, which has a larger torque and a high power factor in lower rotation speeds and a high power factor and a field weakened characteristic in a higher rotation speed range. The motor is provided with a long-hole shaped slit arranged between a rotor magnetic pole and a further rotor magnetic pole located adjacently to the rotor magnetic pole in a circumferential direction, a permanent magnet MG1 arranged in the slit, and a non-magnetic member NMP1 arranged closely to the permanent magnet MG1 in a direction of magnetic fluxes. For large torque, this configuration reduces variations in rotor field magnetic fluxes, due to torque current components. In the rotation speeds, magnetic fluxes from the permanent magnet is suppressed from causing excessive field magnetic fluxes, which balances larger torque with higher power factors and a field weakened characteristic with higher power factors.
    Type: Application
    Filed: October 24, 2018
    Publication date: September 26, 2019
    Inventor: Masayuki NASHIKI
  • Patent number: 10063127
    Abstract: A motor and an inverter are configured to present higher performance and to be produced in a compact side and lower cost. In an AC motor having four or more poles, stator windings for the same phase are wound at deferent circumferential positions. Using these stator windings, power required for field windings in a rotor is supplied from the stator side to the rotor side. In the rotor, a plurality of power reception windings are provided and outputs from the power reception windings are rectified to provide a field current to the field windings.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 28, 2018
    Inventor: Masayuki Nashiki
  • Publication number: 20160226356
    Abstract: A motor and an inverter are configured to present higher performance and to be produced in a compact side and lower cost. In an AC motor having four or more poles, stator windings for the same phase are wound at deferent circumferential positions. Using these stator windings, power required for field windings in a rotor is supplied from the stator side to the rotor side. In the rotor, a plurality of power reception windings are provided and outputs from the power reception windings are rectified to provide a field current to the field windings.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 4, 2016
    Inventor: Masayuki NASHIKI
  • Patent number: 8922153
    Abstract: A full-pitch winding switched reluctance motor is provided. In this motor, one set of current components are estimated, which electromagnetically act on only one set of stator poles for one phase. Based on the estimated one set of current components, current components for respective three phases are controlled, resulting in accurate current control with no electromagnetic interactions with other phases. This current control allows a control circuit to be made compact, and a motor with effective field means can be provided.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: December 30, 2014
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa
  • Patent number: 8847522
    Abstract: In a motor, a stationary member is provided with a number M (M is a positive integer) of first poles within 360 electrical degrees at spaces therebetween. A plurality of windings are at least partly wound in the spaces, respectively. A movable member is movably arranged relative to the stationary member and provided with a number K (K is a positive integer) of second poles. The number K of second poles is different from the number M of first poles. A unidirectional current supply unit supplies a unidirectional current to at least one of the windings so as to create an attractive force between at least one of the first poles and a corresponding at least one of the second poles to thereby move the movable member relative to the stationary member.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: September 30, 2014
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa, Yuichiro Ito
  • Patent number: 8803376
    Abstract: An AC motor is provided. In the AC motor, there are M pieces (M is an integer of 3 or more) of stator pole groups SPG are arranged in a rotor axis direction, where each of the stator poles groups is composed of a plurality of stator poles which are for the same phase and arranged in a circumferential direction of the motor. Between the stator pole groups SPG, “M?1” pieces of annular windings WR are arranged which allow one-way current to flow therethrough. The windings WR are arranged such that the directions of current passing therethrough are reversed in turn in the rotor axis direction. The stator pole groups SPG are excited to generate magnetic fluxes ?G directed in a one way. The excited directions of the magnetic fluxes ?G are reversed in turn in the rotor axis direction.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: August 12, 2014
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa
  • Patent number: 8704472
    Abstract: An AC electric motor includes an annular A-phase winding WA wound in the circumferential direction of a stator, a stator pole group SPGA configured to generate magnetic flux ?A to interlink with the A-phase winding WA, an annular B-phase winding WB wound in the circumferential direction, and a stator pole group SPGB configured to generate magnetic flux ?B to interlink with the B-phase winding WB. The motor additionally includes a third stator pole group SPGC, N and S magnetic poles of the rotor, and X magnetic poles, which serve as third rotor poles, showing magnetic characteristics between the N and S magnetic poles of the rotor. DC currents are supplied to the A-phase and B-phase windings WA and WB to generate rotational torque.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Denso Corporation
    Inventor: Masayuki Nashiki
  • Patent number: 8395294
    Abstract: An AC motor having loop windings is provided, which is able to reduce unbalance of three-phase impedance to enhance the motor efficiency. Three loop windings of the three phases are interlinked with magnetic fluxes ?u, ?v and ?w of the respective phases to provide magnetic paths of the three phases. The magnetic paths of the three phases are connected to the respective stator poles of the three phases to configure the motor. The magnetic path of each of the three phases is formed by processing an electromagnetic steel plate using bending to provide a motor configuration having multiple stator poles. Magnetic fluxes of two or more stator poles of the same phase are collected to a single magnetic path to form a three-dimensional three-phase magnetic path without allowing close contact with a magnetic path of a different phase.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 12, 2013
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Shinji Makita, Yoshinobu Kamada, Eisuke Takahashi
  • Publication number: 20120319639
    Abstract: A torque generator includes a full-pitch winding reluctance motor provided with three-phase or more coils which are composed of full-pitch windings, and a control unit therefor. The control unit controls currents supplied to the respective phase coils such that the coil for a first phase designated among the phases is first started to be current-supplied and then the coil for a second phase designated among the phases is started to be current-supplied during the current supply to the coil for the first phase. The control unit decreases an amount of the current supplied to the first coil immediately before starting the current supply to the second coil and to reinstate the amount of the current supplied to the first coil in response to starting the current supply to the second coil.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 20, 2012
    Applicant: DENSO CORPORATION
    Inventors: Tomokazu ISHIKAWA, Masayuki Nashiki
  • Publication number: 20120235615
    Abstract: An AC electric motor includes an annular A-phase winding WA wound in the circumferential direction of a stator, a stator pole group SPGA configured to generate magnetic flux ?A to interlink with the A-phase winding WA, an annular B-phase winding WB wound in the circumferential direction, and a stator pole group SPGB configured to generate magnetic flux ?B to interlink with the B-phase winding WB. The motor additionally includes a third stator pole group SPGC, N and S magnetic poles of the rotor, and X magnetic poles, which serve as third rotor poles, showing magnetic characteristics between the N and S magnetic poles of the rotor. DC currents are supplied to the A-phase and B-phase windings WA and WB to generate rotational torque.
    Type: Application
    Filed: October 20, 2011
    Publication date: September 20, 2012
    Applicant: DENSO CORPORATION
    Inventor: Masayuki NASHIKI
  • Publication number: 20120169267
    Abstract: A full-pitch winding switched reluctance motor is provided. In this motor, one set of current components are estimated, which electromagnetically act on only one set of stator poles for one phase. Based on the estimated one set of current components, current components for respective three phases are controlled, resulting in accurate current control with no electromagnetic interactions with other phases. This current control allows a control circuit to be made compact, and a motor with effective field means can be provided.
    Type: Application
    Filed: November 18, 2011
    Publication date: July 5, 2012
    Applicant: DENSO CORPORATION
    Inventors: Masayuki NASHIKI, Tomokazu ISHIKAWA
  • Patent number: 8203246
    Abstract: A five-phase motor includes a stator and a movable member movable relative to the stator in a preset direction. The stator includes a stator core provided with five slots within 360 electrical degrees thereof. The five slots are arranged in the preset direction at preset first pitches. The stator includes at least one set of five-phase stator windings. The five-phase stator windings are arranged in the five slots relative to each other such that each of the five-phase stator windings is wound at a preset second pitch. The second pitch substantially corresponds to two of the first pitches.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: June 19, 2012
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Naoki Tanaka, Hiroyasu Kudo
  • Publication number: 20120091940
    Abstract: An AC motor is provided. In the AC motor, there are M pieces (M is an integer of 3 or more) of stator pole groups SPG are arranged in a rotor axis direction, where each of the stator poles groups is composed of a plurality of stator poles which are for the same phase and arranged in a circumferential direction of the motor. Between the stator pole groups SPG, “M?1” pieces of annular windings WR are arranged which allow one-way current to flow therethrough. The windings WR are arranged such that the directions of current passing therethrough are reversed in turn in the rotor axis direction. The stator pole groups SPG are excited to generate magnetic fluxes ?G directed in a one way. The excited directions of the magnetic fluxes ?G are reversed in turn in the rotor axis direction.
    Type: Application
    Filed: May 11, 2011
    Publication date: April 19, 2012
    Applicant: DENSO CORPORATION
    Inventors: Masayuki NASHIKI, Tomokazu Ishikawa
  • Patent number: 8120215
    Abstract: A motor and a control unit therefor comprise: salient rotor poles and salient stator poles, which are arranged along circumferences of phases A, B and C with an even interval therebetween; magnetic paths for passing magnetic fluxes, the paths permitting the magnetic fluxes passing through the salient rotor and stator poles of each phase to return to the rotor side; and substantially looped windings arranged between the salient stator poles of individual phases and the magnetic paths for passing magnetic fluxes, wherein currents are supplied to the windings in synchronization with the rotational position of the rotor to thereby output torque. Since the structures of the stator, the rotor and the windings are simple, productivity is enhanced, whereby high quality, small size and low cost can be realized.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 21, 2012
    Assignee: Denso Corporation
    Inventor: Masayuki Nashiki
  • Publication number: 20110241599
    Abstract: In a system, a plurality of motors are provided. Each of the plurality of motors has a plurality of phase windings. Each of the plurality of motors is rotated when a unidirectional current is supplied to each of the plurality of phase windings thereof. A motor select unit includes a plurality of selectors connected to the plurality of motors, respectively. The motor select unit selects at least one of the plurality of motors via a corresponding at least one of the selectors. A phase current supplier is connected in series to each of the plurality of selectors. The phase current supplier supplies a direct current as the unidirectional current to each of the plurality of phase windings of the selected at least one of the plurality of motors via a corresponding at least one of the selectors.
    Type: Application
    Filed: April 1, 2011
    Publication date: October 6, 2011
    Applicant: DENSO CORPORATION
    Inventors: Masayuki Nashiki, Tomokazu Ishikawa
  • Patent number: 7911107
    Abstract: A motor is provided, which includes: a rotor having rotor pole groups, in which N-poles and S-poles are alternately arranged in the circumferential direction; an N number (N is a positive integer) of stator pole groups, in which a plurality of stator poles are arranged for individual phases along or in the vicinity of the respective circumferences so as to be positioned at substantially the same rotational phase position in terms of electrical angle; and an (N?1) number of loop windings axially arranged between the stator pole groups, with the same phase being arranged at axial ends, wherein each of the loop windings is arranged radially inner than the outer diameter of each rotor pole group. This simplified winding structure can enhance productivity, reduce size, enhance efficiency and reduce cost.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: March 22, 2011
    Assignee: Denso Corporation
    Inventor: Masayuki Nashiki
  • Patent number: 7825561
    Abstract: A brushless motor and a related control device are disclosed in a structure wherein a stator has U-phase, V-phase and W-phase stator poles, with two of the U-phase V-phase and W-phase stator poles carry thereon respective phase windings, in the absence of a selected phase winding related to a remaining one of the U-phase V-phase and W-phase stator poles. The respective phase windings have end portions connected together at a junction point. A three-phase alternating voltage is applied to the respective phase windings and the junction point to allow the stator to have an electromagnetic action thereby drivably rotating a rotor. The stator poles may be formed in trapezoid shapes to minimize interference between associated component parts for easy assembly in high productivity and efficiency with a reduction in torque ripple.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 2, 2010
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Shinji Makita, Yoshinobu Kamada
  • Patent number: 7816822
    Abstract: A motor includes: a rotor having permanent magnets in which N-poles and S-poles are alternately arranged in the circumferential direction; seven stator pole groups, each of which has a plurality of stator poles arranged in the circumferential direction, the stator pole groups being arranged with the circumferential and axial positions of the stator poles in one stator pole group being offset from those of other stator pole groups; and a plurality of loop windings formed in the circumferential direction and arranged at positions adjacent to the plurality of stator pole groups in the rotor shaft direction.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: October 19, 2010
    Assignee: Denso Corporation
    Inventor: Masayuki Nashiki