Patents by Inventor Masayuki Nishizawa

Masayuki Nishizawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878354
    Abstract: A single-crystal diamond having a first facet plane is prepared. The single-crystal diamond is fixed to the support based on the first facet plane. An X-ray image of the single-crystal diamond is captured, the X-ray image being an X-ray image in which a crystal orientation of the single-crystal diamond is associated with an X-ray emission direction by associating the support to which the single-crystal diamond is fixed with the X-ray emission direction. A position of an inclusion of the single-crystal diamond in the single-crystal diamond is specified based on the X-ray image. It is determined whether or not a shape of the diamond tool intermediate is extractable from the single-crystal diamond with the inclusion being not included in an inclusion-excluded region. The shape of the diamond tool intermediate is extracted from the single-crystal diamond with the inclusion being not included in the inclusion-excluded region.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: January 23, 2024
    Assignee: SUMITOMO ELECTRIC HARDMETAL CORP.
    Inventors: Masayuki Nishizawa, Kiichi Meguro
  • Publication number: 20230358685
    Abstract: A method of measuring a concentration of nitrogen in diamond includes a first step, a second step, and a third step. In the first step, diamond is arranged in the inside of an integrating sphere. In the second step, visible light is emitted to the inside of the integrating sphere and the visible light that is reflected by an inner surface of the integrating sphere and passes through or is reflected by diamond arranged in the inside of the integrating sphere is received. In the third step, the concentration of nitrogen in diamond is calculated based on data on received visible light and a mass of diamond.
    Type: Application
    Filed: April 28, 2021
    Publication date: November 9, 2023
    Inventors: Masayuki NISHIZAWA, Momoko IIDA, Kiichi MEGURO
  • Publication number: 20220402047
    Abstract: A single-crystal diamond having a first facet plane is prepared. The single-crystal diamond is fixed to the support based on the first facet plane. An X-ray image of the single-crystal diamond is captured, the X-ray image being an X-ray image in which a crystal orientation of the single-crystal diamond is associated with an X-ray emission direction by associating the support to which the single-crystal diamond is fixed with the X-ray emission direction. A position of an inclusion of the single-crystal diamond in the single-crystal diamond is specified based on the X-ray image. It is determined whether or not a shape of the diamond tool intermediate is extractable from the single-crystal diamond with the inclusion being not included in an inclusion-excluded region. The shape of the diamond tool intermediate is extracted from the single-crystal diamond with the inclusion being not included in the inclusion-excluded region.
    Type: Application
    Filed: December 24, 2020
    Publication date: December 22, 2022
    Inventors: Masayuki NISHIZAWA, Kiichi MEGURO
  • Patent number: 9499887
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: November 22, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Patent number: 9103010
    Abstract: A magnesium alloy structural member having excellent corrosion resistance is provided. The magnesium alloy structural member includes a magnesium alloy substrate that contains more than 7.5% by mass of Al and an anticorrosive layer formed on a surface of the substrate by chemical conversion treatment. The substrate contains a precipitate, typically, particles dispersed therein. The particles are made of an intermetallic compound containing at least one of Al and Mg and have an average particle size of 0.05 ?m or more and 1 ?m or less. The total area of the particles accounts for 1% by area or more and 20% by area or less. The anticorrosive layer includes a lower sublayer and a surface sublayer on the substrate in this order. The surface sublayer is denser than the lower sublayer. The substrate of the magnesium alloy structural member has high corrosion resistance because of a high Al content.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: August 11, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Osamu Mizuno, Nobuyuki Okuda, Koji Mori, Masahiro Yamakawa, Masayuki Nishizawa, Takayasu Sugihara
  • Publication number: 20150017057
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 15, 2015
    Inventors: Ryuichi INOUE, Nozomu KAWABE, Nobuyuki MORI, Masatada NUMANO, Junichi MATSUMOTO, Motonori NAKAMURA, Masayuki NISHIZAWA, Atsushi KIMURA, Yukihiro OISHI
  • Patent number: 8906294
    Abstract: A magnesium alloy material having excellent impact resistance is provided. The magnesium alloy material is composed of a magnesium alloy that contains more than 7.5% by mass of Al and has a Charpy impact value of 30 J/cm2 or more. Typically, the magnesium alloy material has an elongation of 10% or more at a tension speed of 10 m/s in a high-speed tensile test. The magnesium alloy is composed of a precipitate, typically made of an intermetallic compound containing at least one of Al and Mg, and contains particles having an average particle size of 0.05 ?M or more and 1 ?m or less dispersed therein. The total area of the particles accounts for 1% by area or more and 20% by area or less. The magnesium alloy material containing fine precipitate particles dispersed therein has high impact absorption capacity through dispersion strengthening and has excellent impact resistance.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: December 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Osamu Mizuno, Nobuyuki Okuda, Koji Mori, Masahiro Yamakawa, Masayuki Nishizawa, Takayasu Sugihara, Kohji Inokuchi, Nozomu Kawabe
  • Patent number: 8828158
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Publication number: 20120308809
    Abstract: A magnesium alloy structural member having excellent corrosion resistance is provided. The magnesium alloy structural member includes a magnesium alloy substrate that contains more than 7.5% by mass of Al and an anticorrosive layer formed on a surface of the substrate by chemical conversion treatment. The substrate contains a precipitate, typically, particles dispersed therein. The particles are made of an intermetallic compound containing at least one of Al and Mg and have an average particle size of 0.05 ?m or more and 1 ?m or less. The total area of the particles accounts for 1% by area or more and 20% by area or less. The anticorrosive layer includes a lower sublayer and a surface sublayer on the substrate in this order. The surface sublayer is denser than the lower sublayer. The substrate of the magnesium alloy structural member has high corrosion resistance because of a high Al content.
    Type: Application
    Filed: December 6, 2010
    Publication date: December 6, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Osamu Mizuno, Nobuyuki Okuda, Koji Mori, Masahiro Yamakawa, Masayuki Nishizawa, Takayasu Sugihara
  • Publication number: 20120282131
    Abstract: A magnesium alloy material having excellent impact resistance is provided. The magnesium alloy material is composed of a magnesium alloy that contains more than 7.5% by mass of Al and has a Charpy impact value of 30 J/cm2 or more. Typically, the magnesium alloy material has an elongation of 10% or more at a tension speed of 10 m/s in a high-speed tensile test. The magnesium alloy is composed of a precipitate, typically made of an intermetallic compound containing at least one of Al and Mg, and contains particles having an average particle size of 0.05 ?M or more and 1 ?m or less dispersed therein. The total area of the particles accounts for 1% by area or more and 20% by area or less. The magnesium alloy material containing fine precipitate particles dispersed therein has high impact absorption capacity through dispersion strengthening and has excellent impact resistance.
    Type: Application
    Filed: December 6, 2010
    Publication date: November 8, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Osamu Mizuno, Nobuyuki Okuda, Koji Mori, Masahiro Yamakawa, Masayuki Nishizawa, Takayasu Sugihara, Kohji Inokuchi, Nozomu Kawabe
  • Publication number: 20110162426
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: February 3, 2011
    Publication date: July 7, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryuichi INOUE, Nozomu KAWABE, Nobuyuki MORI, Masatada NUMANO, Junichi MATSUMOTO, Motonori NAKAMURA, Masayuki NISHIZAWA, Atsushi KIMURA, Yukihiro OISHI
  • Publication number: 20100254848
    Abstract: The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
    Type: Application
    Filed: June 9, 2008
    Publication date: October 7, 2010
    Inventors: Ryuichi Inoue, Nozomu Kawabe, Nobuyuki Mori, Masatada Numano, Junichi Matsumoto, Motonori Nakamura, Masayuki Nishizawa, Atsushi Kimura, Yukihiro Oishi
  • Patent number: 4380791
    Abstract: First, second and third dichroic filters are positioned at corresponding ones of first, second and third light sources for deriving red, green and blue beams, respectively, from the light sources. A beam guide member has first, second and third branched bundles and a main bundle composed of the first, second and third branched bundles. Each branched bundle has an end surface at which a corresponding one of the beams derived from the dichroic filters is provided. The main bundle has an end surface for emitting the beams. A light quantity control circuit controls the quantities of light of the light sources.
    Type: Grant
    Filed: May 26, 1981
    Date of Patent: April 19, 1983
    Assignee: Hoei Sangyo Kabushiki Kaisha
    Inventor: Masayuki Nishizawa
  • Patent number: D452425
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: December 25, 2001
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Emhart, Inc.
    Inventors: Ikuo Sato, Masayuki Nishizawa
  • Patent number: D460911
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: July 30, 2002
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Emhart, Inc.
    Inventors: Ikuo Sato, Masayuki Nishizawa