Patents by Inventor Masayuki Shibuya

Masayuki Shibuya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969830
    Abstract: An aluminum alloy brazing sheet including a core material, a sacrificial material provided on one surface of the core material, a brazing filler material provided on the other surface side of the core material, and an intermediate layer provided between the core material and the brazing filler material. The core material contains Si: 0.30 to 1.00 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.60 to 1.20 mass %, Mg: 0.05 to 0.80 mass %, and Al. The sacrificial material contains Si: 0.10 to 1.20 mass %, Zn: 2.00 to 7.00 mass %, Mn: 0.40 mass % or less, and Al. The intermediate layer contains Si: 0.05 to 1.20 mass %, Mn: 0.50 to 2.00 mass %, Cu: 0.10 to 1.20 mass %, and Al.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: April 30, 2024
    Assignee: Kobe Steel, Ltd.
    Inventors: Tatsuki Hashimoto, Kenichiro Yoshida, Yuji Shibuya, Akihiro Tsuruno, Yoshikazu Miyano, Hajime Sugito, Michiyasu Yamamoto, Masayuki Makita, Arisu Fujii, Shin Takewaka, Hayaki Teramoto, Koichi Yamamoto, Toshihide Ninagawa
  • Publication number: 20220372602
    Abstract: This austenitic stainless steel sheet contains, as a chemical composition, by mass %, C: 0.030% or less, Si: 1.0% or less, Mn: 1.5% or less, Cr: 15.0% or more and 20.0% or less, Ni: 6.5% or more and 9.0% or less, N: 0.030% or more and 0.150% or less, any one of Nb, V, and Ti or two or more thereof in total: 0.030% or more and 0.300% or less, Mo: 0% or more and 2.0% or less, Cu: 0% or more and 1.5% or less, Co: 0% or more and 1.0% or less, P: 0.10% or less, S: 0.010% or less, and Al: 0.10% or less, in which a remainder includes Fe and impurities, the average grain size is 5.0 ?m or less, and the non-recrystallization rate is more than 3% and 20% or less.
    Type: Application
    Filed: October 17, 2019
    Publication date: November 24, 2022
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masayoshi SAWADA, Hiroshi KAMIO, Masayuki SHIBUYA, Atsushi KIKUCHI
  • Patent number: 10744600
    Abstract: A metal plate for laser processing (such as a stainless steel plate or a titanium plate) and preferably an austenitic stainless steel plate suitable for use as a metal mask or the like which undergoes fine processing with a laser has an average grain diameter d (?m) and a plate thickness t (?m) which satisfy the equation d?0.0448·t?1.28.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: August 18, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kazuyoshi Fujisawa, Masayuki Shibuya, Kouichi Takeuchi
  • Patent number: 9979004
    Abstract: The clad material comprises outer layers each consisting of Ni or Ni alloy and a base layer consisting of Cu or Cu alloy, and is characterized in that peeling-off at a clad boundary is not recognized in cross section observation made after the clad material has been subjected to a 90° reverse bend test ten times, and the number of reverse bend cycles before rupture is 17 cycles or more. The clad material has with both of excellent corrosion resistance against electrolytic solution and high electric conductivity.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 22, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kentarou Yoshida, Daisaku Arizono, Syuji Yoshida, Hayato Kita, Kouichi Takeuchi, Masayuki Shibuya, Hideya Kaminaka
  • Publication number: 20170239755
    Abstract: A metal plate for laser processing (such as a stainless steel plate or a titanium plate) and preferably an austenitic stainless steel plate suitable for use as a metal mask or the like which undergoes fine processing with a laser has an average grain diameter d (?m) and a plate thickness t (?m) which satisfy the equation d?0.0448·t?1.28.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 24, 2017
    Inventors: Kazuyoshi FUJISAWA, Masayuki Shibuya, Kouichi Takeuchi
  • Patent number: 9631249
    Abstract: Martensitic mixed phase stainless steel, which has in well balance between excellent strength and formability and excellent fatigue properties, and is inexpensive, and suitable for spring members, has: a chemical composition comprising C: 0.1-0.4%, Si: at most 2.0%, Mn: 0.1-6.0%, Cr: 10.0-28.0%, N: at most 0.17%, the remainder of Fe and impurities, and a metallurgical structure which includes a ferrite phase and a martensitic phase, and also a retained austenite phase of 5 volume % or less if necessary, and which satisfies a relationship of CM/CF?5.0 where an average value CF of C content existing in the ferrite phase, and an average value CM of C content existing in the martensite.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 25, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuhiko Adachi, Takashi Maeda, Masayuki Shibuya, Kazuyoshi Fujisawa, Yuuichi Fukumura
  • Patent number: 9243314
    Abstract: A high-Si content austenitic stainless steel, which exhibits stable acid resistance and excellent corrosion resistance in high-temperature and concentrated nitric acid, has a chemical composition comprising: C: at most 0.04%; Si: 2.5-7.0%; Mn: at most 10%; P at most 0.03%; S: at most 0.03%; N: at most 0.035%; sol. Al: at most 0.03%; Cr: 7-20%; Ni: 10-22%; optionally, one or more types selected from Nb, Ti, Ta and Zr: 0.05-0.7% in total; and the remainder being Fe and impurities, wherein a total amount of B1 type inclusions measured by a method according to JIS G0555 (2003) Annex 1 “Microscopic Testing for the Non-Metallic Inclusions on the Point Counting Principle” is not more than 0.03% by area %.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: January 26, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomoyuki Sukawa, Shinnya Yamamoto, Kouichi Takeuchi, Hayato Kita, Shuuji Yoshida, Katsuhiko Taketsu, Masayuki Shibuya
  • Publication number: 20140299239
    Abstract: Martensitic mixed phase stainless steel, which has in well balance between excellent strength and formability and excellent fatigue properties, and is inexpensive, and suitable for spring members, has: a chemical composition comprising C: 0.1-0.4%, Si: at most 2.0%, Mn: 0.1-6.0%, Cr: 10.0-28.0%, N: at most 0.17%, the remainder of Fe and impurities, and a metallurgical structure which includes a ferrite phase and a martensitic phase, and also a retained austenite phase of 5 volume % or less if necessary, and which satisfies a relationship of CM/CF?5.0 where an average value CF of C content existing in the ferrite phase, and an average value CM of C content existing in the martensite.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 9, 2014
    Inventors: Kazuhiko Adachi, Takashi Maeda, Masayuki Shibuya, Kazuyoshi Fujisawa, Yuuichi Fukumura
  • Publication number: 20140294659
    Abstract: A high-Si content austenitic stainless steel, which exhibits stable acid resistance and excellent corrosion resistance in high-temperature and concentrated nitric acid, has a chemical composition comprising: C: at most 0.04%; Si: 2.5-7.0%; Mn: at most 10%; P at most 0.03%; S: at most 0.03%; N: at most 0.035%; sol. Al: at most 0.03%; Cr: 7-20%; Ni: 10-22%; optionally, one or more types selected from Nb, Ti, Ta and Zr: 0.05-0.7% in total; and the remainder being Fe and impurities, wherein a total amount of B1 type inclusions measured by a method according to JIS G0555 (2003) Annex 1 “Microscopic Testing for the Non-Metallic Inclusions on the Point Counting Principle” is not more than 0.03% by area %.
    Type: Application
    Filed: July 26, 2012
    Publication date: October 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomoyuki Sukawa, Shinnya Yamamoto, Kouichi Takeuchi, Hayato Kita, Shuuji Yoshida, Katsuhiko Taketsu, Masayuki Shibuya
  • Publication number: 20140261917
    Abstract: A high Si-containing austenitic stainless steel having corrosion resistance in a nitric acid environment at a high temperature is made by hot-rolling a slab of stainless steel and heat treating the hot-rolled stainless steel at a temperature of 1100 to 1160° C. The steel is cooled at cooling rate of at least 100° C./min. The stainless steel has a chemical composition containing: C: at most 0.04%; Cr: 7 to 20%, Ni: 10 to 22%, Si: 2.5 to 7%, Mn: at most 10%, sol. Al: at most 0.03%, P: at most 0.03%, S: at most 0.03%; N: at most 0.035%, a total of one or more of Nb, Ti, Ta, and Zr being 0.05 to 0.7%; and the remainder Fe and impurities. The heating temperature during the hot rolling is Th in which ?T of Formula (1): Th=1135?90Si?2.9Cr+40 Ni??T is at least 30?C.
    Type: Application
    Filed: July 26, 2012
    Publication date: September 18, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hayato Kita, Masayuki Shibuya, Shuuji Yoshida, Tomoyuki Sukawa
  • Publication number: 20140060428
    Abstract: A metal plate for laser processing (such as a stainless steel plate or a titanium plate) and preferably an austenitic stainless steel plate suitable for use as a metal mask or the like which undergoes fine processing with a laser has an average grain diameter d (?m) and a plate thickness t (?m) which satisfy the equation d?0.0448·t?1.28.
    Type: Application
    Filed: February 29, 2012
    Publication date: March 6, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuyoshi Fujisawa, Masayuki Shibuya, Kouichi Takeuchi
  • Publication number: 20130209874
    Abstract: The clad material comprises outer layers each consisting of Ni or Ni alloy and a base layer consisting of Cu or Cu alloy, and is characterized in that peeling-off at a clad boundary is not recognized in cross section observation made after the clad material has been subjected to a 90° reverse bend test ten times, and the number of reverse bend cycles before rupture is 17 cycles or more. The clad material has with both of excellent corrosion resistance against electrolytic solution and high electric conductivity.
    Type: Application
    Filed: June 2, 2011
    Publication date: August 15, 2013
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kentarou Yoshida, Daisaku Arizono, Syuji Yoshida, Hayato Kita, Kouichi Takeuchi, Masayuki Shibuya, Hideya Kaminaka
  • Patent number: 7674614
    Abstract: An optical resolving reagent comprising at least one of compounds represented by the following formulae (1) and (2) (1) (2) (wherein R1 to R8 each represents hydrogen or C1-20 alkyl; R9 represents optionally substituted C1-20 alkyl, optionally substituted C1-20 alkenyl, formyl, or acyl; and R10 represents C1-6 alkyl; provided that the molecule represented by the formula (1) is of the cis configuration with respect to R9 and OR10); and a method of optically resolving with the optical resolving reagent an alcohol having an asymmetric carbon atom in the molecule and represented by the formula (3): (R11)(R12)(R13)COH (wherein R11, R12, and R13 each represents hydrogen or optionally substituted C1-20 alkyl, provided that at least one of R11, R12, and R13 is not hydrogen). The method of optical resolution is highly suitable for general purposes. By the method, a mixture of optical isomers of any of various alcohols can be optically resolved easily and industrially advantageously.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 9, 2010
    Assignee: Zeon Corporation
    Inventors: Hisao Nemoto, Masayuki Shibuya
  • Publication number: 20070155994
    Abstract: An optical resolving reagent comprising at least one of compounds represented by the following formulae (1) and (2) (1) (2) (wherein R1 to R8 each represents hydrogen or C1-20 alkyl; R9 represents optionally substituted C1-20 alkyl, optionally substituted C1-20 alkenyl, formyl, or acyl; and R10 represents C1-6 alkyl; provided that the molecule represented by the formula (1) is of the cis configuration with respect to R9 and OR10); and a method of optically resolving with the optical resolving reagent an alcohol having an asymmetric carbon atom in the molecule and represented by the formula (3): (R11) (R12) (R13)COH (wherein R11, R12, and R13 each represents hydrogen or optionally substituted C1-20 alkyl, provided that at least one of R11, R12, and R13 is not hydrogen) The method of optical resolution is highly suitable for general purposes By the method, a mixture of optical isomers of any of various alcohols can be optically resolved easily and industrially advantageously.
    Type: Application
    Filed: March 7, 2007
    Publication date: July 5, 2007
    Applicant: ZEON CORPORATION
    Inventors: Hisao NEMOTO, Masayuki Shibuya
  • Patent number: 7190970
    Abstract: A small-sized low-cost multiplexer with a low insertion loss includes a first filter defining a lowpass filter that passes a signal in a first frequency band and attenuates a signal in second and third frequency bands, a second filter including a SAW filter and defining a bandpass filter that passes a signal in the second frequency band and attenuates a signal in the first and third frequency bands, and a third filter defining a highpass filter that passes a signal in the third frequency band and attenuates a signal in the first and second frequency bands. One of two ports of each of the first, second, and third filters are connected in common with a common port.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: March 13, 2007
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Akihiro Ochii, Masayuki Shibuya, Norio Nakajima
  • Publication number: 20040116098
    Abstract: A small-sized low-cost multiplexer with a low insertion loss includes a first filter defining a lowpass filter that passes a signal in a first frequency band and attenuates a signal in second and third frequency bands, a second filter including a SAW filter and defining a bandpass filter that passes a signal in the second frequency band and attenuates a signal in the first and third frequency bands, and a third filter defining a highpass filter that passes a signal in the third frequency band and attenuates a signal in the first and second frequency bands. One of two ports of each of the first, second, and third filters are connected in common with a common port.
    Type: Application
    Filed: November 24, 2003
    Publication date: June 17, 2004
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Akihiro Ochii, Masayuki Shibuya, Norio Nakajima
  • Publication number: 20040077098
    Abstract: An optical resolving reagent comprising at least one of compounds represented by the following formulae (1) and (2) (1) (2) (wherein R1 to R8 each represents hydrogen or C1-20 alkyl; R9 represents optionally substituted C1-20 alkyl, optionally substituted C1-20 alkenyl, formyl, or acyl; and R10 represents C1-6 alkyl; provided that the molecule represented by the formula (1) is of the cis configuration with respect to R9 and OR10); and a method of optically resolving with the optical resolving reagent an alcohol having an asymmetric carbon atom in the molecule and represented by the formula (3):(R11)(R12)(R13)COH (wherein R11, R12, and R13 each represents hydrogen or optionally substituted C1-20 alkyl, provided that at least one of R11, R12, and R13 is not hydrogen). The method of optical resolution is highly suitable for general purposes. By the method, a mixture of optical isomers of any of various alcohols can be optically resolved easily and industrially advantageously.
    Type: Application
    Filed: August 26, 2003
    Publication date: April 22, 2004
    Inventors: Hisao Nemoto, Masayuki Shibuya
  • Patent number: 4605109
    Abstract: A gear-shift mechanism for a transmission unit which includes a fork shaft slidably supported in a housing assembly which is selectively shifted from its neutral position to forward and reverse positions, a detent mechanism for selectively retaining the fork shaft in its neutral and shifted positions, a shift head member slidable on the fork shaft, a one-way engagement mechanism for effecting the engagement between the shift head member and the fork shaft during axial displacement of the fork shaft toward and away from its reverse position, and a shift arm member pivotably mounted to the inner wall structure of the housing assembly and linked with the shift head member to retain an idler gear in its neutral position and engage the same with driving and driven gears. The detent mechanism includes a first holder member having a slot in its upper portion and a shaft fixed to the upper side portion of the first holder member and a second holder member fitted into the first holder member.
    Type: Grant
    Filed: June 27, 1984
    Date of Patent: August 12, 1986
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hisashi Fukuchi, Masayuki Shibuya, Yasuie Takahashi