Patents by Inventor Masayuki Shinkai

Masayuki Shinkai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11799119
    Abstract: A manifold includes a first manifold main body and a second manifold main body. The first manifold main body includes a first gas chamber configured to communicate with a first gas channel. The second manifold main body includes a second gas chamber configured to communicate with a second gas channel. The second manifold main body is disposed in the first manifold main body.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: October 24, 2023
    Assignee: NGK INSULATORS, LTD.
    Inventors: Noriyuki Ogasawara, Yuki Tanaka, Masayuki Shinkai, Hirofumi Kan, Makoto Ohmori
  • Patent number: 11362344
    Abstract: A cell stack device includes a manifold and a fuel cell. The manifold includes a gas supply chamber and a gas collection chamber. The fuel cell includes a support substrate and a power generation element portion. The support substrate includes first and second gas channels. The first gas channel is connected to the gas supply chamber, and the second gas channel is connected to the gas collection chamber. The first gas channel is open in the gas supply chamber at a proximal end portion. The second gas channel is open in the gas collection chamber at a proximal end portion. The first and second gas channels are connected to each other on the distal end portion side. The first and second gas channels are configured such that a pressure loss of gas in the first gas channel is smaller than a pressure loss of gas in the second gas channel.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: June 14, 2022
    Assignee: NGK INSULATORS, LTD.
    Inventors: Risako Ito, Makoto Ohmori, Hirofumi Kan, Yuki Tanaka, Masayuki Shinkai
  • Patent number: 11264633
    Abstract: A manifold includes first and second manifold main bodies. The first manifold main body includes a gas supply chamber that is connected to a first gas channel and the second manifold main body includes a gas collection chamber that is connected to a second gas channel. The first manifold main body includes a top plate, a first bottom plate, and a first side plate. The top plate includes a first through hole for connecting the first gas channel and the gas supply chamber. The second manifold main body includes the top plate, a second bottom plate, and a second side plate. The top plate also includes a second through hole for connecting the second gas channel and the gas collection chamber. The first bottom plate and the second bottom plate are constituted by members that are separate from each other.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 1, 2022
    Assignee: NGK INSULATORS, LTD.
    Inventors: Noriyuki Ogasawara, Yuki Tanaka, Masayuki Shinkai, Hirofumi Kan, Makoto Ohmori
  • Publication number: 20210043962
    Abstract: A manifold includes a first manifold main body and a second manifold main body. The first manifold main body includes a first gas chamber configured to communicate with a first gas channel. The second manifold main body includes a second gas chamber configured to communicate with a second gas channel. The second manifold main body is disposed in the first manifold main body.
    Type: Application
    Filed: October 27, 2020
    Publication date: February 11, 2021
    Inventors: Noriyuki OGASAWARA, Yuki TANAKA, Masayuki SHINKAI, Hirofumi KAN, Makoto OHMORI
  • Publication number: 20200083554
    Abstract: A manifold includes first and second manifold main bodies. The first manifold main body includes a gas supply chamber that is connected to a first gas channel, and the second manifold main body includes a gas collection chamber that is connected to a second gas channel. The first manifold main body includes a first top plate, a first bottom plate, and a first side plate. The first top plate includes a first through hole for connecting the first gas channel and the gas supply chamber. The second manifold main body includes a second top plate, a second bottom plate, and a second side plate. The second top plate includes a second through hole for connecting the second gas channel and the gas collection chamber. The first bottom plate and the second bottom plate are constituted by members that are separate from each other.
    Type: Application
    Filed: September 3, 2019
    Publication date: March 12, 2020
    Inventors: Noriyuki OGASAWARA, Yuki TANAKA, Masayuki SHINKAI, Hirofumi KAN, Makoto OHMORI
  • Publication number: 20200006789
    Abstract: A cell stack device includes a manifold and a fuel cell. The manifold includes a gas supply chamber and a gas collection chamber. The fuel cell includes a support substrate and a power generation element portion. The support substrate includes first and second gas channels. The first gas channel is connected to the gas supply chamber, and the second gas channel is connected to the gas collection chamber. The first gas channel is open in the gas supply chamber at a proximal end portion. The second gas channel is open in the gas collection chamber at a proximal end portion. The first and second gas channels are connected to each other on the distal end portion side. The first and second gas channels are configured such that a pressure loss of gas in the first gas channel is smaller than a pressure loss of gas in the second gas channel.
    Type: Application
    Filed: September 4, 2019
    Publication date: January 2, 2020
    Inventors: Risako ITO, Makoto OHMORI, Hirofumi KAN, Yuki TANAKA, Masayuki SHINKAI
  • Patent number: 10181605
    Abstract: A plurality of insertion holes for inserting one end of each of a plurality of cells is formed on the surface of a support substrate. One end of each of the cells is loosely fitted in the corresponding insertion hole. A joining material is provided so as to fill at least a gap present between the inner wall of the insertion hole and the outer wall of the one end of the cell in each joining portion between each of the insertion holes and one end of the corresponding cell. As the joining material, crystallized glass which includes a plurality of kinds of crystal phases generated when the crystallization of amorphous glass heated up to a crystallization temperature proceeds is used, and a volume reduction ratio (crystallization shrinkage ratio) of the joining material caused by the crystallization at the crystallization temperature is 0.78% or more and 12% or less.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: January 15, 2019
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Tomohiro Usui, Koichi Koga, Masayuki Shinkai, Genta Terazawa
  • Patent number: 8968962
    Abstract: A reduction process is performed to each fuel electrode layer by supplying a reduction gas into each fuel channel 22 in the state in which a perimetric portion of a sheet body 11 is held to be sealed by perimetric portions of an upper support member 122 and a lower support member 121. In the case of a small-sized fuel cell in which the thickness of the sheet body 11 is 20˜500 ?m, the fuel electrode layer is greater in thickness than the solid electrolyte layer and the air electrode layer, and the area of the orthogonal projection of the plane portion 12a of each support member 12 is 1˜100 cm2, a ratio of a warpage of not more than 0.05 cm?1 on the sheet body with respect to the area of the orthogonal projection can be achieved at room temperature after the reduction process.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: March 3, 2015
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Natsumi Shimogawa, Masayuki Shinkai, Toshiyuki Nakamura
  • Patent number: 8900760
    Abstract: The solid oxide fuel cell has a stack structure formed by stacking sheet bodies each of which comprises three layers of the electrolyte layer, a fuel electrode layer, an air electrode layer, and separators in alternating layers. In an air channel defined between the air electrode and the separator facing the air electrode layer, a SUS mesh made of stainless steel for electrically connecting both of them is confined. On the surface of the SUS mesh, previously by itself before the assembly of the stack structure, an Ag-plating treatment is performed and further a vacuum heat-treatment (heat-treatment under a negative pressure) is performed.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: December 2, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Toshiyuki Nakamura, Masayuki Shinkai, Tsutomu Nanataki
  • Publication number: 20140004439
    Abstract: A plurality of insertion holes for inserting one end of each of a plurality of cells is formed on the surface of a support substrate. One end of each of the cells is loosely fitted in the corresponding insertion hole. A joining material is provided so as to fill at least a gap present between the inner wall of the insertion hole and the outer wall of the one end of the cell in each joining portion between each of the insertion holes and one end of the corresponding cell. As the joining material, crystallized glass which includes a plurality of kinds of crystal phases generated when the crystallization of amorphous glass heated up to a crystallization temperature proceeds is used, and a volume reduction ratio (crystallization shrinkage ratio) of the joining material caused by the crystallization at the crystallization temperature is 0.78% or more and 12% or less.
    Type: Application
    Filed: May 28, 2013
    Publication date: January 2, 2014
    Inventors: Makoto OHMORI, Tomohiro USUI, Koichi KOGA, Masayuki SHINKAI, Genta TERAZAWA
  • Patent number: 8603696
    Abstract: In a fuel cell, perimetric portions of each sheet body, an upper support member, and a lower support member are sealed against one another by a seal that includes first and second seal portions. The first seal portion is of glass having a softening point lower than a working temperature of the reactor and seals against the upper surface of the perimetric portion of the sheet body and the lower surface of the perimetric portion of the upper support member as well as against the lower surface of the perimetric portion of the sheet body and the upper surface of the perimetric portion of the lower support member. The second seal portion is of glass having a softening point higher than the working temperature and seals against the lower side end and upper side end of the perimetric portions of the upper and lower support members, respectively.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: December 10, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Natsumi Shimogawa, Tsutomu Nanataki, Masayuki Shinkai
  • Patent number: 8377611
    Abstract: An assembling method of a solid oxide fuel cell, having a stack structure in which sheet bodies and separators are stacked in alternating layers, includes a stacking step, a sealing step, and a reduction process step. In the sealing step, a laminate in which a crystallized glass material is interposed between the perimetric portions adjacent to each other is heated, so that the crystallization rate of the crystallized glass is increased to 0 to 50%. Accordingly, the perimetric portions adjacent to each other are integrated and sealed, and a room for glass softening is left. In the reduction process step, the laminate is heated, and a reduction gas is supplied into a fuel channel, whereby the reduction process is performed to the fuel electrode layer, and the crystallization rate is increased to 70 to 100%. Thus, the assembly of the fuel cell is completed.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: February 19, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Natsumi Shimogawa, Masayuki Shinkai, Toshiyuki Nakamura
  • Patent number: 8043764
    Abstract: A stack structure includes plate-like electrochemical cells of ceramic, each having a pair of main surfaces and a side surface, and plate-like retainer pieces. The cell includes a first electrode in contact with first gas, a solid electrolyte, and a second electrode in contact with second gas. The first electrode has a gas flow channel formed therein and adapted to allow flow of the first gas. The cell has gas inflow and outflow ports. The retainer piece includes a body portion having a through-hole formed therein, and a pair of protrusions protruding from the body portion. The retainer piece has a communication hole formed therein and adapted to establish communication between the through-hole and a space formed between the protrusions. The cell is held by the paired protrusions, thereby establishing communication between the gas inflow or outflow port of the cell and the communication hole of the retainer piece.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: October 25, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshiaki Kuno, Takenori Ichigi, Keiichi Kanno, Makoto Ohmori, Masayuki Shinkai, Genta Terazawa
  • Patent number: 7891066
    Abstract: A plate material vertical processing line that is capable of subjecting large-sized and thinned glass plates to scribing, venting, etc without degrading their quality, comprises a plurality of processing devices each having a modular structure; wherein each of the processing devices includes a platform; a belt conveyor that is mounted on the platform and is configured to convey a glass plate placed in a substantially upright position while supporting a lower end of the glass plate; and a fluid guide that is mounted on the platform and is configured to apply a fluid pressure to a surface of the glass plate to support the glass plate in the substantially upright position and in a non-contact state; and wherein the processing devices include a combination of at least two processing devices selected from a scribing device, a venting device, a chamfering device, a cleaning agent washing device, a water washing device, a high-pressure water spray device, and a glass plate turn device.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: February 22, 2011
    Assignees: Kawasaki Plant Systems Kabushiki Kaisha, Corning Japan K.K.
    Inventors: Yoshiaki Aoki, Keiji Tsujita, Morimasa Kuge, Takaaki Yokoyama, Takashi Sakurai, Michio Suzuki, Masayuki Anada, Masayuki Shinkai
  • Publication number: 20100190066
    Abstract: The solid oxide fuel cell has a stack structure formed by stacking sheet bodies, each of which comprises three layers of the electrolyte layer, a fuel electrode layer, an air electrode layer, and separators in alternating layers. In an air channel defined between the air electrode and the separator facing the air electrode layer, a SUS mesh made of stainless steel for electrically connecting both of them is confined. On the surface of the SUS mesh, previously by itself before the assembly of the stack structure, an Ag-plating treatment is performed and further a vacuum heat-treatment (heat-treatment under a negative pressure) is performed.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 29, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto OHMORI, Toshiyuki Nakamura, Masayuki Shinkai, Tsutomu Nanataki
  • Publication number: 20100190090
    Abstract: A stack structure includes plate-like electrochemical cells of ceramic, each having a pair of main surfaces and a side surface, and plate-like retainer pieces. The cell includes a first electrode in contact with first gas, a solid electrolyte, and a second electrode in contact with second gas. The first electrode has a gas flow channel formed therein and adapted to allow flow of the first gas. The cell has gas inflow and outflow ports. The retainer piece includes a body portion having a through-hole formed therein, and a pair of protrusions protruding from the body portion. The retainer piece has a communication hole formed therein and adapted to establish communication between the through-hole and a space formed between the protrusions. The cell is held by the paired protrusions, thereby establishing communication between the gas inflow or outflow port of the cell and the communication hole of the retainer piece.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 29, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Toshiaki KUNO, Takenori Ichigi, Keiichi Kanno, Makoto Ohmori, Masayuki Shinkai, Genta Terazawa
  • Patent number: 7758970
    Abstract: A different materials bonded member includes a ceramic base material and a metallic member which are bonded together through an Au solder material. The solder material is disposed on a bonding surface of the ceramic base through a given active metal layer or a given metalized layer and the solder material is heated and melted to form a pre-coat layer adhering to the bonding surface, the metallic member is disposed on a surface of the pre-coat layer through a barrier layer having a given function. A bonded part is formed by solidifying the pre-coat layer after it has been heated and melted under given temperature conditions to bond the ceramic base and the metallic member to one another.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: July 20, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Masayuki Shinkai, Takahiro Ishikawa, Masahiro Kida
  • Patent number: 7708812
    Abstract: A hydrogen gas separator fixing structure includes a gas separator having a support and a membrane provided on at least one surface of the support, which membrane contains a first metal capable of separating hydrogen gas from a hydrogen-containing gas, a metal flange connected to at least one open end of the gas separator, a bonding layer containing a second metal, provided at the portion at which the gas separator and the metal flange are connected to each other and on the surface of the gas separation membrane side of the portion, a packing provided on the bonding layer, and a ring-shaped metal member capable of fixing the packing by pressing, provided so that at least part thereof is in contact with the bonding layer, wherein the bonding layer is provided by a heat treatment conducted at a temperature lower than the melting point of the second metal.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: May 4, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Masayuki Shinkai, Osamu Sakai
  • Publication number: 20100055531
    Abstract: A reduction process is performed to each fuel electrode layer by supplying a reduction gas into each fuel channel 22 in the state in which a perimetric portion of a sheet body 11 is held to be sealed by perimetric portions of an upper support member 122 and a lower support member 121. In the case of a small-sized fuel cell in which the thickness of the sheet body 11 is 20˜500 ?m, the fuel electrode layer is greater in thickness than the solid electrolyte layer and the air electrode layer, and the area of the orthogonal projection of the plane portion 12a of each support member 12 is 1˜100 cm2, a ratio of a warpage of not more than 0.05 cm?1 on the sheet body with respect to the area of the orthogonal projection can be achieved at room temperature after the reduction process.
    Type: Application
    Filed: August 12, 2009
    Publication date: March 4, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Natsumi Shimogawa, Masayuki Shinkai, Toshiyuki Nakamura
  • Publication number: 20100050422
    Abstract: An assembling method of a solid oxide fuel cell, having a stack structure in which sheet bodies and separators are stacked in alternating layers, includes a stacking step, a sealing step, and a reduction process step. In the sealing step, a laminate in which a crystallized glass material is interposed between the perimetric portions adjacent to each other is heated, so that the crystallization rate of the crystallized glass is increased to 0 to 50%. Accordingly, the perimetric portions adjacent to each other are integrated and sealed, and a room for glass softening is left. In the reduction process step, the laminate is heated, and a reduction gas is supplied into a fuel channel, whereby the reduction process is performed to the fuel electrode layer, and the crystallization rate is increased to 70 to 100%. Thus, the assembly of the fuel cell is completed.
    Type: Application
    Filed: August 10, 2009
    Publication date: March 4, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto OHMORI, Natsumi SHIMOGAWA, Masayuki SHINKAI, Toshiyuki NAKAMURA