Patents by Inventor Masayuki Suda

Masayuki Suda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11570330
    Abstract: An image processing apparatus includes a processing section and a control section configured to instruct operation of the processing section. The control section executes, before sending, to the processing section, a first instruction corresponding to an instruction that caused an error in the past, an error avoidance operation based on instruction history information and operation state history information acquired from a storing section that stores the instruction history information and the operation state history information, the instruction history information indicating an instruction given to the processing section by the control section, the operation state history information indicating an operation state of the processing section caused by the instruction.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: January 31, 2023
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Masayuki Suda
  • Publication number: 20210306514
    Abstract: An image processing apparatus includes a processing section and a control section configured to instruct operation of the processing section. The control section executes, before sending, to the processing section, a first instruction corresponding to an instruction that caused an error in the past, an error avoidance operation based on instruction history information and operation state history information acquired from a storing section that stores the instruction history information and the operation state history information, the instruction history information indicating an instruction given to the processing section by the control section, the operation state history information indicating an operation state of the processing section caused by the instruction.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 30, 2021
    Inventor: Masayuki SUDA
  • Patent number: 10823560
    Abstract: A tilt sensor includes: a pressure sensor disposed to be relatively movable with respect to a detection target object and configured to detect pressure of a fluid; and a tilt information detection unit configured to detect tilt information (for example, a tilt angle) of the detection target object according to an output of the pressure sensor and movement information of the pressure sensor.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 3, 2020
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Takeshi Uchiyama, Manabu Oumi, Yoko Shinohara, Masayuki Suda, Ayako Nobe, Yoshiyuki Kaiho
  • Patent number: 10451510
    Abstract: A pressure change measuring apparatus and a pressure change measuring method are capable of detecting a change in pressure to be measured with respect to a time axis with high accuracy. The pressure change measuring apparatus includes a reference value setting unit that generates a reference value signal based on an output signal of a differential pressure measuring cantilever under a predetermined state and outputs the reference value signal. An arithmetic processing unit calculates the pressure change in the pressure to be measured based on the output signal, the reference value signal, a volume of a cavity, and a flowing quantity of a pressure transmission medium flowing into and out of the cavity for every unit of a predetermined time period.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 22, 2019
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Yoko Shinohara, Masayuki Suda, Manabu Oumi, Takeshi Uchiyama, Yoshiyuki Kaiho, Ayako Nobe
  • Patent number: 10393608
    Abstract: An arithmetic processing unit included in a pressure change measuring apparatus includes a differential pressure calculation unit configured to obtain a pressure difference between an inner pressure of a cavity and a pressure to be measured based on an output signal of a differential pressure measuring cantilever. A pressure-to-be-measured calculating unit calculates the pressure to be measured based on a set inner pressure of the cavity and the differential pressure calculated by the differential pressure calculation unit. A flow rate calculating unit calculates a flowing quantity of a pressure transmission medium flowing into and out of the cavity for every unit of a predetermined time period based on the differential pressure calculated by the differential pressure calculation unit.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 27, 2019
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Yoko Shinohara, Takeshi Uchiyama, Manabu Oumi, Masayuki Suda
  • Patent number: 10094724
    Abstract: A pressure sensor which detects variation in pressures, the pressure sensor including a cantilever which is bent according to a pressure difference between the inside and the outside of a cavity in a sensor main body, and an intra-lever gap which is formed on a proximal end portion of the cantilever. The proximal end portion is partitioned into a first support portion and a second support portion by an intra-lever gap in a second direction orthogonal to a first direction in which the proximal end portion and a distal end portion are connected to each other in plan view. A doped layer which is provided on a portion of the first and second support portions forms a first displacement detection portion and a second displacement detection portion. Lengths of the first and second displacement detection portions are shorter than those of the first and second supports along the second direction.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: October 9, 2018
    Assignees: SEIKO INSTRUMENTS INC., THE UNIVERSITY OF TOKYO
    Inventors: Isao Shimoyama, Kiyoshi Matsumoto, Hidetoshi Takahashi, Minh-Dung Nguyen, Takeshi Uchiyama, Manabu Oumi, Yoko Shinohara, Masayuki Suda
  • Publication number: 20180238685
    Abstract: A tilt sensor includes: a pressure sensor disposed to be relatively movable with respect to a detection target object and configured to detect pressure of a fluid; and a tilt information detection unit configured to detect tilt information (for example, a tilt angle) of the detection target object according to an output of the pressure sensor and movement information of the pressure sensor.
    Type: Application
    Filed: August 10, 2016
    Publication date: August 23, 2018
    Applicant: SEIKO INSTRUMENTS INC.
    Inventors: Takeshi UCHIYAMA, Manabu OUMI, Yoko SHINOHARA, Masayuki SUDA, Ayako NOBE, Yoshiyuki KAIHO
  • Patent number: 9995642
    Abstract: A pressure sensor includes a sensor main body having a cavity, a cantilever having a lever main body and lever support-portion, which is bent according to a pressure difference between the cavity and sensor outside main body, and a displacement detection unit detects cantilever displacement based on resistance variation in resistance values of the main body-resistance portion formed in the lever main body and lever-resistance portion formed in the lever support-portion. A division groove is formed in the lever support; the division divides the lever-resistance portion into a first resistance portion electrically connected to a detection-electrode in series and second resistance portion closer to other adjacent lever support-portion than the first resistance portion.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: June 12, 2018
    Assignees: THE UNIVERSITY OF TOKYO, SEIKO INSTRUMENTS INC.
    Inventors: Isao Shimoyama, Kiyoshi Matsumoto, Hidetoshi Takahashi, Minh-Dung Nguyen, Takeshi Uchiyama, Manabu Oumi, Yoko Shinohara, Masayuki Suda
  • Publication number: 20170292877
    Abstract: The present invention is a pressure sensor (1) which includes a sensor main body (2) having a cavity, a cantilever (3) having a lever main body (20) and a lever support portion (21A, 21B) and which is bent according to a pressure difference between the cavity and the outside of the sensor main body (2), and a displacement detection unit (4) which detects displacement of the cantilever (3) based on resistance variation in resistance values of the main body-resistance portion (31) formed in the lever main body (20) and a lever-resistance portion (32) formed in the lever support portion (21A, 21B). A division groove (40) is formed in the lever support (21A), and the division groove (40) divides the lever-resistance portion (32) into a first resistance portion (32a) which is electrically connected to a detection electrode (35) in series and a second resistance portion (32b) which is positioned so as to be closer to the other adjacent lever support portion (21B) than the first resistance portion (32a).
    Type: Application
    Filed: September 28, 2015
    Publication date: October 12, 2017
    Applicants: THE UNIVERSITY OF TOKYO, SEIKO INSTRUMENTS INC.
    Inventors: Isao SHIMOYAMA, Kiyoshi MATSUMOTO, Hidetoshi TAKAHASHI, Minh-Dung NGUYEN, Takeshi UCHIYAMA, Manabu OUMI, Yoko SHINOHARA, Masayuki SUDA
  • Publication number: 20170276563
    Abstract: The present invention provides a pressure change measuring apparatus and a pressure change measuring method, which are capable of detecting a change in pressure to be measured with respect to a time axis with high accuracy. Specifically, a reference value setting unit (60) included in a pressure change measuring apparatus (1) is configured to generate a reference value signal based on an output signal of a differential pressure measuring cantilever (4) under a predetermined state, and to output the reference value signal. An arithmetic processing unit (30) is configured to calculate the pressure change in pressure to be measured based on the output signal, the reference value signal, a volume of a cavity (10), a flowing quantity of a pressure transmission medium flowing into and out of the cavity (10) for every unit of a predetermined time period, and the like.
    Type: Application
    Filed: August 18, 2015
    Publication date: September 28, 2017
    Inventors: Yoko SHINOHARA, Masayuki SUDA, Manabu OUMI, Takeshi UCHIYAMA, Yoshiyuki KAIHO, Ayako NOBE
  • Publication number: 20170160162
    Abstract: An arithmetic processing unit (30) included in a pressure change measuring apparatus (1) includes: a differential pressure calculation unit configured to obtain a pressure difference between an inner pressure of a cavity (10) and a pressure to be measured based on an output signal of a differential pressure measuring cantilever (4); a pressure-to-be-measured calculating unit configured to calculate the pressure to be measured based on a set inner pressure of the cavity (10) and the differential pressure calculated by the differential pressure calculation unit; a flow rate calculating unit configured to calculate a flowing quantity of a pressure transmission medium flowing into and out of the cavity (10) for every unit of a predetermined time period based on the differential pressure calculated by the differential pressure calculation unit; and an inner pressure updating unit configured to calculate the inner pressure of the cavity (10) after the predetermined time period based on the flowing quantity calculat
    Type: Application
    Filed: June 25, 2014
    Publication date: June 8, 2017
    Inventors: Yoko SHINOHARA, Takeshi UCHIYAMA, Manabu OUMI, Masayuki SUDA
  • Patent number: 9645115
    Abstract: A QCM sensor for detecting a physical quantity of a sample includes a quartz crystal vibrator for measurement, a quartz crystal vibrator for reference, and a housing accommodating the quartz crystal vibrator for measurement and the quartz crystal vibrator for reference. The quartz crystal vibrator for measurement has a first electrode that is contacted by a measurement sample to be detected, and a first quartz substrate provided with a surface on which the first electrode is formed. The quartz crystal vibrator for reference has a second electrode that is contacted by a reference sample as a reference when detecting a physical quantity of the measurement sample, and a second quartz substrate provided with a surface on which the second electrode is formed. A confining portion connects to the housing to confine the reference sample in a state of contacting the second electrode.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 9, 2017
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Sachiko Tanabe, Masayuki Suda, Hiroshi Muramatsu
  • Patent number: 9645117
    Abstract: A piezoelectric unit 1 includes a piezoelectric element that causes thickness shear vibration, a first electrode provided on one surface of the piezoelectric element, a second electrode and a third electrode which are provided on an opposite surface to the one surface which is provided with the first electrode of the piezoelectric element and are electrically insulated from each other, and a switching portion that is connected to the first electrode, the second electrode, and the third electrode, in which the switching portion can switch measurement modes between a mass/viscoelasticity measurement mode for measuring mass of a substance which is in contact with the piezoelectric element or viscoelasticity by vibrating the piezoelectric element, and an electrical characteristic measurement mode for measuring electrical characteristics between the second electrode and the third electrode.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: May 9, 2017
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Sachiko Tanabe, Masayuki Suda, Hiroshi Muramatsu
  • Publication number: 20160349130
    Abstract: A pressure sensor which detects variation in pressures, the pressure sensor including a cantilever which is bent according to a pressure difference between the inside and the outside of a cavity in a sensor main body, and an intra-lever gap which is formed on a proximal end portion of the cantilever. The proximal end portion is partitioned into a first support portion and a second support portion by an intra-lever gap in a second direction orthogonal to a first direction in which the proximal end portion and a distal end portion are connected to each other in plan view. A doped layer which is provided on a portion of the first and second support portions forms a first displacement detection portion and a second displacement detection portion. Lengths of the first and second displacement detection portions are shorter than those of the first and second supports along the second direction.
    Type: Application
    Filed: February 27, 2015
    Publication date: December 1, 2016
    Applicants: SEIKO INSTRUMENTS INC., THE UNIVERSITY OF TOKYO
    Inventors: Isao SHIMOYAMA, Kiyoshi MATSUMOTO, Hidetoshi TAKAHASHI, Minh-Dung NGUYEN, Takeshi UCHIYAMA, Manabu OUMI, Yoko SHINOHARA, Masayuki SUDA
  • Publication number: 20150198562
    Abstract: A piezoelectric unit 1 includes a piezoelectric element that causes thickness shear vibration, a first electrode provided on one surface of the piezoelectric element, a second electrode and a third electrode which are provided on an opposite surface to the one surface which is provided with the first electrode of the piezoelectric element and are electrically insulated from each other, and a switching portion that is connected to the first electrode, the second electrode, and the third electrode, in which the switching portion can switch measurement modes between a mass/viscoelasticity measurement mode for measuring mass of a substance which is in contact with the piezoelectric element or viscoelasticity by vibrating the piezoelectric element, and an electrical characteristic measurement mode for measuring electrical characteristics between the second electrode and the third electrode.
    Type: Application
    Filed: May 21, 2013
    Publication date: July 16, 2015
    Inventors: Sachiko Tanabe, Masayuki Suda, Hiroshi Muramatsu
  • Publication number: 20140165702
    Abstract: A QCM (Quartz Crystal Microbalance) sensor includes a quartz crystal vibrator for measurement having a first electrode which contacts a measurement sample to be detected and a first quartz substrate in which is formed the first electrode, and a quartz crystal vibrator for reference having a second electrode which contacts a reference sample serving as a reference when detecting the physical quantity of the measurement sample and a second quartz substrate in which is formed the second electrode. A housing accommodates the quartz crystal vibrators and confines the reference sample in a state of contacting the second electrode. The QCM sensor is capable of detecting a physical quantity of the measurement sample accurately at the time of measuring the physical quantity of the sample in an atmosphere of the sample.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 19, 2014
    Applicant: SEIKO INSTRUMENTS INC.
    Inventors: Sachiko TANABE, Masayuki SUDA, Hiroshi MURAMATSU
  • Patent number: 7952272
    Abstract: In an EL element including a light emitting layer sandwiched between upper and lower electrodes, of light emitted therefrom, light totally reflected at a light emitting layer interface is not taken out, so there is a problem in that light emission efficiency reduces. Therefore, a light scattering layer in which metal particles are dispersed is provided between an electrode and the light emitting layer. According to such a structure, the light from the light emitting layer can be scattered by the metal particles and taken out, thereby improving the light emission efficiency. When plasmon is excited in the metal particles, light confined in the light emitting layer or each layer adjacent thereto can be used, thereby improving light use efficiency.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: May 31, 2011
    Assignee: Seiko Instruments Inc.
    Inventors: Manabu Oumi, Masayuki Suda, Shuhei Yamamoto, Mitsuru Suginoya, Shigeru Senbonmatsu
  • Publication number: 20070114523
    Abstract: In an EL element including a light emitting layer sandwiched between upper and lower electrodes, of light emitted therefrom, light totally reflected at a light emitting layer interface is not taken out, so there is a problem in that light emission efficiency reduces. Therefore, a light scattering layer in which metal particles are dispersed is provided between an electrode and the light emitting layer. According to such a structure, the light from the light emitting layer can be scattered by the metal particles and taken out, thereby improving the light emission efficiency. When plasmon is excited in the metal particles, light confined in the light emitting layer or each layer adjacent thereto can be used, thereby improving light use efficiency.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 24, 2007
    Inventors: Manabu Oumi, Masayuki Suda, Shuhei Yamamoto, Mitsuru Suginoya, Shigeru Senbonmatsu
  • Publication number: 20070048895
    Abstract: An organic electronic device using an extremely thin substrate is manufactured by a simple and easy method. That is, according to the method of manufacturing the organic electronic device of the present invention, a first surface of a substrate is subjected to polishing, a protective layer is provided on the first surface, and a second surface on the back side of the first surface of the substrate is removed through etching to reduce the thickness of the substrate. As a result, the extremely thin substrate may be formed. Two extremely thin substrates manufactured through the above process are arranged such that etching surfaces thereof are opposed to each other. Then, the two substrates are bonded to each other so as to hold a layer containing a polymer material therebetween. Thereafter, the protective layer is removed. Accordingly, the organic electronic device is formed on the first surface from which the protective layer has been removed.
    Type: Application
    Filed: January 27, 2006
    Publication date: March 1, 2007
    Inventors: Mitsuru Suginoya, Shuhei Yamamoto, Masayuki Suda
  • Publication number: 20060159277
    Abstract: The invention provides a distortion device that allows obtaining a comfortable distortion sound across a wide input level range with a simple construction. An output with a distortion, Y=AX+BSX2 (here, A and B are constants, S is a value that becomes +1 or ?1 according to a sign of the input X), is outputted from an input X.
    Type: Application
    Filed: January 9, 2006
    Publication date: July 20, 2006
    Inventor: Masayuki Suda