Patents by Inventor Masayuki Uegami

Masayuki Uegami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10056612
    Abstract: This invention provides lithium manganate which has a high output and is excellent in high-temperature stability. This invention relates to lithium manganate particles which are produced by mixing a lithium compound, a manganese compound, a Y compound and an A compound and then calcining the resulting mixture, and have a composition represented by the following chemical formula 1 and an average secondary particle diameter (D50) of 1 to 15 ?m, in which Y is at least one element selected from the group consisting of Al and Mg; A is a sintering aid element having a melting point of not higher than 850° C.; x and y satisfy 0.03?x?0.15 and 0?y?0.20, respectively; z is in the range of 0 to 2.5 mol % based on Mn, wherein the lithium manganate particles have a sulfur content of not more than 100 ppm.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: August 21, 2018
    Assignee: TODA KOGYO CORPORATION
    Inventors: Kazumichi Koga, Masayuki Uegami, Hiroaki Masukuni, Kazutoshi Matsumoto, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 9505631
    Abstract: The present invention relates to positive electrode active substance particles for lithium ion batteries, comprising lithium manganate particles comprising Li and Mn as main components and having a cubic spinel structure (Fd-3m), wherein primary particles of the positive electrode active substance have a dodecahedral or higher-polyhedral shape in which none of crystal planes equivalent to the (111) plane are located adjacent to each other, and flat crystal planes are crossed with each other to form a clear ridge, and an average primary particle diameter of the primary particles is not less than 1 ?m and not more than 20 ?m. The positive electrode active substance particles according to the present invention are excellent in packing property, load characteristics and high-temperature stability.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: November 29, 2016
    Assignee: TODA KOGYO CORPORATION
    Inventors: Hiroaki Masukuni, Kazumichi Koga, Masayuki Uegami, Kazutoshi Matsumoto
  • Patent number: 9496551
    Abstract: The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of not less than 2 ?m and not more than 10 ?m as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2?x?yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: November 15, 2016
    Assignee: TODA KOGYO CORPORATION
    Inventors: Kazumichi Koga, Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20160248089
    Abstract: This invention provides lithium manganate which has a high output and is excellent in high-temperature stability. This invention relates to lithium manganate particles which are produced by mixing a lithium compound, a manganese compound, a Y compound and an A compound and then calcining the resulting mixture, and have a composition represented by the following chemical formula 1 and an average secondary particle diameter (D50) of 1 to 15 ?m, in which Y is at least one element selected from the group consisting of Al and Mg; A is a sintering aid element having a melting point of not higher than 850° C.; x and y satisfy 0.03?x?0.15 and 0?y?0.20, respectively; z is in the range of 0 to 2.5 mol % based on Mn, wherein the lithium manganate particles have a sulfur content of not more than 100 ppm.
    Type: Application
    Filed: May 5, 2016
    Publication date: August 25, 2016
    Inventors: Kazumichi KOGA, Masayuki UEGAMI, Hiroaki MASUKUNI, Kazutoshi MATSUMOTO, Kazutoshi ISHIZAKI, Hideaki SADAMURA
  • Publication number: 20160126547
    Abstract: The present invention relates to lithium manganate particles for non-aqueous electrolyte secondary batteries, having a spinel structure, an average primary particle diameter of 0.4 to 1.8 ?m and an average secondary particle diameter (D50) of 8 to 20 ?m, a ratio of the average secondary particle diameter (D50) to the average primary particle diameter (D50/average primary particle diameter) being in the range of 10 to 30, and pore diameters of pores in the lithium manganate particles as measured by a mercury intrusion porosimetry method being in the range of 100 to 500 nm, and a process for producing the lithium manganate particles, and a non-aqueous electrolyte secondary battery. The lithium manganate particles according to the present invention are excellent in high-temperature storage characteristics.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 5, 2016
    Inventors: Kazumichi KOGA, Hiroaki MASUKUNI, Akihisa KAJIYAMA, Masayuki UEGAMI, Kazutoshi MATSUMOTO
  • Patent number: 8852811
    Abstract: According to the present invention, there is provided a process for producing lithium manganate particles having a high output and an excellent high-temperature stability. The present invention relates to a process for producing lithium manganate particles comprising the steps of mixing a lithium compound, a manganese compound and a boron compound with each other; and calcining the resulting mixture in a temperature range of 800 to 1050° C., wherein an average particle diameter (D50) of the boron compound is not more than 15 times an average particle diameter (D50) of the manganese compound, and wherein the lithium manganate particles have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+B in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti, and x and y satisfy the conditions of 0.03?x?0.15 and 0?y?0.20, respectively.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 7, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Kazumichi Koga, Masayuki Uegami, Hiroaki Masukuni, Kazutoshi Matsumoto
  • Patent number: 8821766
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2-x-yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 2, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 8440113
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2?x?yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 14, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 8323612
    Abstract: The present invention relates to lithium manganate particles having a primary particle diameter of 1 to 8 ?m and forming substantially single-phase particles, which have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+Y2 in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is P and is present in an amount of 0.01 to 0.6 mol % based on Mn; and x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, and which lithium manganate particles have a specific surface area of the lithium manganate particles of 0.3 to 0.9 m2/g (as measured by BET method); and have an average particle diameter (D50) of the lithium manganate particles of 3 to 10 ?m. A positive electrode active substance of a lithium ion secondary battery using the lithium manganate particles of the present invention has a high output and is excellent in high-temperature stability.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: December 4, 2012
    Assignee: Toda Kogyo Corporation
    Inventors: Kazumichi Koga, Masayuki Uegami, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20110297876
    Abstract: The present invention relates to positive electrode active substance particles for lithium ion batteries, comprising lithium manganate particles comprising Li and Mn as main components and having a cubic spinel structure (Fd-3m), wherein primary particles of the positive electrode active substance have a dodecahedral or higher-polyhedral shape in which none of crystal planes equivalent to the (111) plane are located adjacent to each other, and flat crystal planes are crossed with each other to form a clear ridge, and an average primary particle diameter of the primary particles is not less than 1 ?m and not more than 20 ?m. The positive electrode active substance particles according to the present invention are excellent in packing property, load characteristics and high-temperature stability.
    Type: Application
    Filed: January 19, 2010
    Publication date: December 8, 2011
    Inventors: Hiroaki Masukuni, Kazumichi Koga, Masayuki Uegami, Kazutoshi Matsumoto
  • Publication number: 20110223483
    Abstract: The present invention provides lithium manganate which has a high output and is excellent in high-temperature stability. The present invention relates to lithium manganate particles which are produced by mixing a lithium compound, a manganese compound, a Y compound and an A compound with each other and then calcining the resulting mixture, and have a composition represented by the following chemical formula 1 and an average secondary particle diameter (D50) of 1 to 15 ?m, Li1+xMn2?x?yYyO4+zA??(Chemical Formula) in which Y is at least one element selected from the group consisting of Al and Mg; A is a sintering aid element having a melting point of not higher than 850° C.; x and y satisfy 0.03?x?0.15 and 0?y?0.20, respectively; z is in the range of 0 to 2.5 mol % based on Mn, wherein the lithium manganate particles have a sulfur content of not more than 100 ppm.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 15, 2011
    Inventors: Kazumichi Koga, Masayuki Uegami, Hioraki Masukuni, Kazutoshi Matsumoto, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20110210287
    Abstract: According to the present invention, there is provided a process for producing lithium manganate particles having a high output and an excellent high-temperature stability. The present invention relates to a process for producing lithium manganate particles comprising the steps of mixing a lithium compound, a manganese compound and a boron compound with each other; and calcining the resulting mixture in a temperature range of 800 to 1050° C., wherein an average particle diameter (D50) of the boron compound is not more than 15 times an average particle diameter (D50) of the manganese compound, and wherein the lithium manganate particles have a composition represented by the following chemical formula: Li1+xMn2-x-yY1yO4+B in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti, and x and y satisfy the conditions of 0.03?x?0.15 and 0?y?0.20, respectively.
    Type: Application
    Filed: September 16, 2009
    Publication date: September 1, 2011
    Inventors: Kazumichi Koga, Masayuki Uegami, Hiroaki Masukuni, Kazutoshi Matsumoto
  • Publication number: 20100327221
    Abstract: The present invention relates to lithium manganate particles having a primary particle diameter of 1 to 8 ?m and forming substantially single-phase particles, which have a composition represented by the following chemical formula: Li1+xMn2?x?yY1yO4+Y2 in which Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is P and is present in an amount of 0.01 to 0.6 mol % based on Mn; and x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, and which lithium manganate particles have a specific surface area of the lithium manganate particles of 0.3 to 0.9 m2/g (as measured by BET method); and have an average particle diameter (D50) of the lithium manganate particles of 3 to 10 ?m. A positive electrode active substance of a lithium ion secondary battery using the lithium manganate particles of the present invention has a high output and is excellent in high-temperature stability.
    Type: Application
    Filed: December 26, 2008
    Publication date: December 30, 2010
    Inventors: Kazumichi Koga, Masayuki Uegami, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20100288969
    Abstract: The present invention relates to lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of not less than 2 ?m and not more than 10 ?m as measured by a particle size distribution meter, and forming particles having substantially a single phase, which have a composition represented by the following chemical formula: Li1+xMn2?x?yY1yO4+Y2 where Y1 is at least one element selected from the group consisting of Ni, Co, Mg, Fe, Al, Cr and Ti; Y2 is at least one element constituting a sintering aid having a melting point of not higher than 800° C., x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, and Y2 is present in an amount of 0.1 to 2.5 mol % based on Mn; the Y1 element being dispersed within the respective particles, and an X-ray diffraction intensity ratio of I(400)/I(111) of the particles being not less than 38% and an X-ray diffraction intensity ratio of I(440)/I(111) thereof being not less than 18%.
    Type: Application
    Filed: November 12, 2008
    Publication date: November 18, 2010
    Inventors: Kazumichi Koga, Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20100207059
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2?x?yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Application
    Filed: March 27, 2008
    Publication date: August 19, 2010
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 7482384
    Abstract: Iron composite particles for purifying soil or ground water, comprise ?-Fe and magnetite, and having a ratio of a diffraction intensity D110 of (110) plane of ?-Fe to a sum of a diffraction intensity D311 of (311) plane of magnetite and the diffraction intensity D110 (D110/(D311+D110)) of 0.30 to 0.95 as measured from X-ray diffraction spectrum of the iron composite particles, an Al content of 0.10 to 1.50% by weight and an S content of 3500 to 7000 ppm; a process for producing the iron composite particles; a purifying agent containing the iron composite particles; a process for producing the purifying agent; and a method for purifying soil or ground water.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: January 27, 2009
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Junichi Kawano, Koji Kakuya, Tomoko Okita, Kenji Okinaka
  • Publication number: 20080314839
    Abstract: Iron composite particles for purifying soil or ground water, comprise ?-Fe and magnetite, and having a ratio of a diffraction intensity D110 of (110) plane of ?-Fe to a sum of a diffraction intensity D311 of (311) plane of magnetite and the diffraction intensity D110 (D110/(D311+D110)) of 0.30 to as measured from X-ray diffraction spectrum of the iron composite particles, an Al content of 0.10 to 1.50% by weight and an S content of 3500 to 7000 ppm; a process for producing the iron composite particles; a purifying agent containing the iron composite particles; a process for producing the purifying agent; and a method for purifying soil or ground water.
    Type: Application
    Filed: August 13, 2008
    Publication date: December 25, 2008
    Applicant: TODA KOGYO CORPORATION
    Inventors: Masayuki Uegami, Junichi Kawano, Koji Kakuya, Tomoko Okita, Kenji Okinaka
  • Publication number: 20080156741
    Abstract: A purifying agent for purifying soil or ground water which comprises a water suspension containing iron composite particles comprising ?-Fe and magnetite, and having an average particle diameter of 0.05 to 0.50 ?m, an S content of 3500 to 10000 ppm and an Al content of 0.10 to 1.50% by weight, and polyaspartic acid or a salt thereof. The purifying agent is capable of decomposing aliphatic organohalogen compounds or aromatic organohalogen compounds contained in the soil or ground water in an efficient, continuous and economical manner.
    Type: Application
    Filed: February 4, 2008
    Publication date: July 3, 2008
    Applicant: TODA KOGYO CORPORATION
    Inventors: Koji Kakuya, Masayuki Uegami, Junichi Kawano, Tomoko Okita, Kenji Okinaka, Andreas D. Jazdanian
  • Patent number: 7351355
    Abstract: A purifying agent for purifying soil or ground water which comprises a water suspension containing iron composite particles comprising ?-Fe and magnetite, and having an average particle diameter of 0.05 to 0.50 ?m, an S content of 3500 to 10000 ppm and an Al content of 0.10 to 1.50% by weight, and polyaspartic acid or a salt thereof. The purifying agent is capable of decomposing aliphatic organohalogen compounds or aromatic organohalogen compounds contained in the soil or ground water in an efficient, continuous and economical manner.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: April 1, 2008
    Assignee: Toda Kogyo Corporation
    Inventors: Koji Kakuya, Masayuki Uegami, Junichi Kawano, Tomoko Okita, Kenji Okinaka, Andreas D. Jazdanian
  • Patent number: 7220366
    Abstract: Iron particles for purifying soil or ground water of the present invention comprise a mixed phase of ?-Fe phase and Fe3O4 phase, and having a BET specific surface area of 5 to 60 m2/g, an Fe content of not less than 75% by weight based on the weight of the iron particles and a sulfur content of not less than 1,000 ppm. The iron particles are capable of decomposing or insolubilizing harmful substances such as organohalogen compounds and/or heavy metals, cyanogen, etc. contained in the soil or ground water in efficient, continuous and economical manners.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: May 22, 2007
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Junichi Kawano, Tomoko Okita, Yasuhiko Fujii, Kenji Okinaka, Koji Kakuya, Soichi Yatagai