Patents by Inventor Mason Terry

Mason Terry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8471170
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: June 25, 2013
    Assignee: Innovalight, Inc.
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Patent number: 8273669
    Abstract: A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: September 25, 2012
    Assignee: Innovalight, Inc.
    Inventors: Dmitry Poplavskyy, Maxim Kelman, Mason Terry
  • Publication number: 20120009721
    Abstract: A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 12, 2012
    Inventors: Malcolm Abbott, Maxim Kelman, Francesco Lemmi, Andreas Meisel, Dmitry Poplavskyy, Mason Terry, Karel Vanheusden
  • Patent number: 7923368
    Abstract: A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: April 12, 2011
    Assignee: Innovalight, Inc.
    Inventors: Mason Terry, Homer Antoniadis, Dmitry Poplavskyy, Maxim Kelman
  • Publication number: 20110053352
    Abstract: A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 3, 2011
    Inventors: Dmitry Poplavskyy, Maxim Kelman, Mason Terry
  • Patent number: 7851336
    Abstract: A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: December 14, 2010
    Assignee: Innovalight, Inc.
    Inventors: Dmitry Poplavskyy, Maxim Kelman, Mason Terry
  • Publication number: 20100275982
    Abstract: A device for generating electricity from solar radiation is disclosed. The device includes a wafer doped with a first dopant, the wafer including a front-side and a back-side, wherein the front-side is configured to be exposed to the solar radiation. The device also includes a fused Group IV nanoparticle thin film deposited on the front-side, wherein the nanoparticle thin film includes a second dopant, wherein the second dopant is a counter dopant. The device further includes a first electrode deposited on the nanoparticle thin film, and a second electrode deposited on the back-side, wherein when solar radiation is applied to the front-side, an electrical current is produced.
    Type: Application
    Filed: February 12, 2008
    Publication date: November 4, 2010
    Inventors: Malcolm Abbott, Maxim Kelman, Francesco Lemmi, Andreas Meisel, Dmitry Poplavskyy, Mason Terry, Karel Vanheusden
  • Publication number: 20100216299
    Abstract: A method for producing a thin film promoter layer is disclosed. The method includes depositing a Group IV semiconductor ink on a substrate, the Group IV semiconductor ink including a set of Group IV semiconductor nanoparticles and a set of metal nanoparticles to form a porous compact. The method also includes heating the substrate to a first temperature between about 350° C. to about 765° C. and for a first time period between 5 min to about 3 hours.
    Type: Application
    Filed: February 29, 2008
    Publication date: August 26, 2010
    Inventors: Dmitry Poplavskyy, Mason Terry
  • Patent number: 7704866
    Abstract: A method for forming a contact to a substrate is disclosed. The method includes providing a substrate, the substrate being doped with a first dopant; and diffusing a second dopant into at least a first side of the substrate to form a second dopant region, the first side further including a first side surface area. The method also includes forming a dielectric layer on the first side of the substrate. The method further includes forming a set of composite layer regions on the dielectric layer, wherein each composite layer region of the set of composite layer regions further includes a set of Group IV semiconductor nanoparticles and a set of metal particles. The method also includes heating the set of composite layer regions to a first temperature, wherein at least some composite layer regions of the set of composite layer regions etch through the dielectric layer and form a set of contacts with the second dopant region.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Innovalight, Inc.
    Inventors: Karel Vanheusden, Francesco Lemmi, Dmitry Poplavskyy, Mason Terry, Malcolm Abbott
  • Publication number: 20090269913
    Abstract: A method of forming a diffusion region is disclosed. The method includes depositing a nanoparticle ink on a surface of a wafer to form a non-densified thin film, the nanoparticle ink having set of nanoparticles, wherein at least some nanoparticles of the set of nanoparticles include dopant atoms therein. The method also includes heating the non-densified thin film to a first temperature and for a first time period to remove a solvent from the deposited nanoparticle ink; and heating the non-densified thin film to a second temperature and for a second time period to form a densified thin film, wherein at least some of the dopant atoms diffuse into the wafer to form the diffusion region.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Mason Terry, Homer Antoniadis, Dmitry Poplavskyy, Maxim Kelman
  • Publication number: 20090239330
    Abstract: A method for forming a contact to a substrate is disclosed. The method includes providing a substrate, the substrate being doped with a first dopant; and diffusing a second dopant into at least a first side of the substrate to form a second dopant region, the first side further including a first side surface area. The method also includes forming a dielectric layer on the first side of the substrate. The method further includes forming a set of composite layer regions on the dielectric layer, wherein each composite layer region of the set of composite layer regions further includes a set of Group IV semiconductor nanoparticles and a set of metal particles. The method also includes heating the set of composite layer regions to a first temperature, wherein at least some composite layer regions of the set of composite layer regions etch through the dielectric layer and form a set of contacts with the second dopant region.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 24, 2009
    Inventors: Karel Vanheusden, Francesco Lemmi, Dmitry Poplavskyy, Mason Terry, Malcolm Abbott
  • Publication number: 20090233426
    Abstract: A method for forming a passivated densified nanoparticle thin film on a substrate in a chamber is disclosed. The method includes depositing a nanoparticle ink on a first region on the substrate, the nanoparticle ink including a set of Group IV semiconductor particles and a solvent. The method also includes heating the nanoparticle ink to a first temperature between about 30° C. and about 400° C., and for a first time period between about 1 minute and about 60 minutes, wherein the solvent is substantially removed, and a porous compact is formed. The method further includes flowing an oxidizer gas into the chamber; and heating the porous compact to a second temperature between about 600° C. and about 1000° C., and for a second time period of between about 5 seconds and about 1 hour; wherein the passivated densified nanoparticle thin film is formed.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Inventors: Dmitry Poplavskyy, Maxim Kelman, Mason Terry
  • Patent number: 7572740
    Abstract: A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: August 11, 2009
    Assignee: Innovalight, Inc.
    Inventors: Mason Terry, Malcolm Abbott, Maxim Kelman, Andreas Meisel, Dmitry Poplavskyy, Eric Schiff
  • Publication number: 20090044661
    Abstract: A plasma processing apparatus for producing a set of Group IV semiconductor nanoparticles from a precursor gas is disclosed. The apparatus includes an outer dielectric tube, the outer tube including an outer tube inner surface and an outer tube outer surface, wherein the outer tube inner surface has an outer tube inner surface etching rate. The apparatus also includes an inner dielectric tube, the inner dielectric tube including an inner tube outer surface, wherein the outer tube inner surface and the inner tube outer surface define an annular channel, and further wherein the inner tube outer surface has an inner tube outer surface etching rate. The apparatus further includes a first outer electrode, the first outer electrode having a first outer electrode inner surface disposed on the outer tube outer surface.
    Type: Application
    Filed: May 1, 2008
    Publication date: February 19, 2009
    Inventors: Xuegeng Li, Christopher Alcantara, Maxim Kelman, Elena Rogojina, Eric Schiff, Mason Terry, Karel Vanheusden
  • Publication number: 20090014423
    Abstract: The present invention provides a radiofrequency plasma apparatus for the production of nanoparticles and method for producing nanoparticles using the apparatus. The apparatus is designed to provide high throughput and makes the continuous production of bulk quantities of high-quality crystalline nanoparticles possible. The electrode assembly of the plasma apparatus includes an outer electrode and a central electrode arranged in a concentric relationship to define an annular flow channel between the electrodes.
    Type: Application
    Filed: July 10, 2007
    Publication date: January 15, 2009
    Inventors: Xuegeng Li, Maxim Kelman, Mason Terry, Elena Rogojina, Eric Schiff, Karel Vanheusden
  • Publication number: 20080254601
    Abstract: A method for producing a Group IV semiconductor thin film in a chamber is disclosed. The method includes positioning a substrate in the chamber, wherein the chamber further has a chamber pressure. The method further includes depositing a nanoparticle ink on the substrate, the nanoparticle ink including set of Group IV semiconductor nanoparticles and a solvent, wherein each nanoparticle of the set of Group IV semiconductor nanoparticles includes a nanoparticle surface, wherein a layer of Group IV semiconductor nanoparticles is formed. The method also includes striking a hydrogen plasma; and heating the layer of Group IV semiconductor nanoparticles to a fabrication temperature of between about 300° C. and about 1350° C., and between about 1 nanosecond and about 10 minutes; wherein the Group IV semiconductor thin film is formed.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 16, 2008
    Inventors: Mason Terry, Malcolm Abbott, Maxim Kelman, Andreas Meisel, Dmitry Poplavskyy, Eric Schiff