Patents by Inventor Masoud Mahjouri-Samani

Masoud Mahjouri-Samani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905588
    Abstract: A device including a chamber and a nozzle detachably connected to the chamber, the nozzle defining an aperture, a target carousel disposed within the chamber, a first laser configured to generate a first beam directed toward the target carousel to perform in-situ ablation to form a laser plume, a gas flow system configured to supply gas into the chamber, such that the gas interacts with the laser plume and causes condensation and formation of nanoparticles, and a second laser configured to generate a second beam directed through the interior of the chamber, through the aperture of the nozzle, and toward a substrate disposed outside the device, the second laser beam configured to sinter and crystalize on the substrate the nanoparticles exiting the nozzle.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: February 20, 2024
    Assignee: AUBURN UNIVERSITY
    Inventors: Masoud Mahjouri-Samani, Nima Shamsaei
  • Publication number: 20220146451
    Abstract: In at least one illustrative embodiment, a field-effect transistor biosensor for detection of a pathogen includes a substrate and a channel formed from a two-dimensional monolayer or few-layer metal chalcogenide that is functionalized with a biorecognition element. The biorecognition element may be an antibody, such as an antibody for the SARS-CoV-2 spike protein. A method for manufacturing the biosensor includes depositing an amorphous two-dimensional material on the substrate with pulsed laser ablation, crystallizing the amorphous two-dimensional material to generate a two-dimensional monolayer coupled to the substrate, and activating a surface of the two-dimensional material with the biorecognition element after crystallizing the amorphous two-dimensional material. The composition of the two-dimensional material may be tuned. The substrate may be photolithographically patterned. Other embodiments are described and claimed.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 12, 2022
    Inventors: MASOUD MAHJOURI-SAMANI, MICHAEL C. HAMILTON, MARCELO KURODA, SAHAR HASIM, PARVIN FATHI-HAFSHEJANI
  • Publication number: 20200391405
    Abstract: A device including a chamber and a nozzle detachably connected to the chamber, the nozzle defining an aperture, a target carousel disposed within the chamber, a first laser configured to generate a first beam directed toward the target carousel to perform in-situ ablation to form a laser plume, a gas flow system configured to supply gas into the chamber, such that the gas interacts with the laser plume and causes condensation and formation of nanoparticles, and a second laser configured to generate a second beam directed through the interior of the chamber, through the aperture of the nozzle, and toward a substrate disposed outside the device, the second laser beam configured to sinter and crystalize on the substrate the nanoparticles exiting the nozzle.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 17, 2020
    Inventors: Masoud MAHJOURI-SAMANI, Nima SHAMSAEI
  • Patent number: 9964846
    Abstract: Methods, articles of manufacture and systems for creating new nanoscale two dimensional materials comprising designed arrays of lateral or vertical heterojunctions may be fabricated by first lithographically masking a 2D material. Exposed, or unmasked, regions of the 2D material may be converted to a different composition of matter to form lateral or vertical heterojunctions according to the patterned mask. PLD and high kinetic energy impingement of atoms may replace or add atoms in the exposed regions, and a plurality of the exposed regions may be converted concurrently. The process may be repeated one or more times on either side of the same 2D material to form any suitable combination of lateral heterojunctions and/or vertical heterojunctions, comprising semiconductors, metals or insulators or any suitable combination thereof. Furthermore, the resulting 2D material may comprise p-n, n-n, p-p, n-p-n and p-n-p junctions, or any suitable combination thereof.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 8, 2018
    Assignee: UT Battelle, LLC
    Inventors: David B. Geohegan, Christopher M. Rouleau, Kai Wang, Kai Xiao, Ming-Wei Lin, Alexander A. Puretzky, Masoud Mahjouri-Samani
  • Publication number: 20170025505
    Abstract: Methods, articles of manufacture and systems for creating new nanoscale two dimensional materials comprising designed arrays of lateral or vertical heterojunctions may be fabricated by first lithographically masking a 2D material. Exposed, or unmasked, regions of the 2D material may be converted to a different composition of matter to form lateral or vertical heterojunctions according to the patterned mask. PLD and high kinetic energy impingement of atoms may replace or add atoms in the exposed regions, and a plurality of the exposed regions may be converted concurrently. The process may be repeated one or more times on either side of the same 2D material to form any suitable combination of lateral heterojunctions and/or vertical heterojunctions, comprising semiconductors, metals or insulators or any suitable combination thereof. Furthermore, the resulting 2D material may comprise p-n, n-n, p-p, n-p-n and p-n-p junctions, or any suitable combination thereof.
    Type: Application
    Filed: July 20, 2016
    Publication date: January 26, 2017
    Inventors: David B. Geohegan, Christopher M. Rouleau, Kai Wang, Kai Xiao, Ming-Wei Lin, Alexander A. Puretzky, Masoud Mahjouri-Samani