Patents by Inventor Masoud Radparvar

Masoud Radparvar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10509084
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: December 17, 2019
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin, Elie K. Track, Richard E. Hitt
  • Patent number: 9618591
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 11, 2017
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin, Elie K. Track, Richard E. Hitt
  • Patent number: 9261573
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 16, 2016
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin, Elie K. Track, Richard E. Hitt
  • Patent number: 8618799
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 31, 2013
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin, Elie K. Track, Richard E. Hitt, Jr.
  • Patent number: 8593141
    Abstract: A magnetic resonance system, comprising at least one SQUID, configured to receive a radio frequency electromagnetic signal, in a circuit configured to produce a pulsatile output having a minimum pulse frequency of at least 1 GHz which is analyzed in a processor with respect to a timebase, to generate a digital signal representing magnetic resonance information. The processor may comprise at least one rapid single flux quantum circuit. The magnetic resonance information may be image information. A plurality of SQUIDs may be provided, fed by a plurality of antennas in a spatial array, to provide parallel data acquisition. A broadband excitation may be provided to address a range of voxels per excitation cycle. The processor may digitally compensate for magnetic field inhomogeneities.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: November 26, 2013
    Assignee: Hypres, Inc.
    Inventors: Masoud Radparvar, Alan M. Kadin
  • Patent number: 5420586
    Abstract: In circuits embodying the invention an analog input signal is magnetically coupled from an input superconducting loop to a second superconducting loop. The analog input signal present in the second loop is magnetically coupled to a third, superconducting comparator, loop in which there is generated current feedback pulses which are magnetically fed back to the second loop to reduce and nullify (i.e., reduce to zero) the magnetic flux and circulating current in the second loop induced by the analog input signal.
    Type: Grant
    Filed: September 29, 1993
    Date of Patent: May 30, 1995
    Assignee: Hypres, Inc.
    Inventor: Masoud Radparvar