Patents by Inventor Massi E. Kiani

Massi E. Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7496391
    Abstract: Embodiments of the present disclosure include an oximeter sensor system including a reusable portion including a substantially rigid connector connected to an end of a cable. The substantially rigid connector includes an electronic element housing at least one electronic component of a probe. The system also includes a disposable portion including a flexible wrap comprising a substantially rigid connection port shaped to receive the substantially rigid connector in a releasably securable manner.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: February 24, 2009
    Assignee: Masimo Corporation
    Inventors: Mohamed Kheir Diab, Massi E. Kiani, Charles Robert Ragsdale, James M. Lepper, Jr.
  • Publication number: 20090048495
    Abstract: An application identification sensor comprises a plurality of emitters configured to transmit light into a tissue site and a detector configured to receive the light after tissue absorption. The detector generates a signal responsive to the intensity of the light and communicates the signal to a monitor. An information element is readable by the monitor so as to identify a sensor application. The monitor presets at least one user-selectable operational parameter in response to the information element.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 19, 2009
    Applicant: Masimo Corporation
    Inventors: Ammar Al-Ali, Massi E. Kiani, Walter M. Weber
  • Publication number: 20090030330
    Abstract: A disposable active pulse sensor has an emitter that generates optical radiation having a plurality of wavelengths, a detector that is responsive to the optical radiation and an unbalanced electrical motor that vibrates when energized. A tape assembly removably attaches the emitter, the detector and the unbalanced electrical motor to a tissue site. The tape assembly also physically mounts the emitter, the detector and the unbalanced electrical motor in a spatial arrangement so that vibration from the unbalanced electrical motor induces pulsatile blood flow within the tissue site, the emitter transmits the optical radiation into the tissue site and the detector generates a sensor signal responsive to the intensity of the optical radiation after attenuation by the pulsatile blood flow within the tissue site.
    Type: Application
    Filed: June 26, 2008
    Publication date: January 29, 2009
    Inventor: Massi E. Kiani
  • Patent number: 7483729
    Abstract: Access is provided to certain pulse oximetry systems utilizing a keyed sensor and a corresponding locked sensor port of a restricted access monitor. In such systems, the keyed sensor has a key comprising a memory element, and the monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port, and the memory reader is able to retrieve predetermined data from the memory element. The monitor is accessed by providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: January 27, 2009
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Ronald Coverston, Massi E. Kiani
  • Publication number: 20080300471
    Abstract: A physiological parameter system has one or more parameter inputs responsive to one or more physiological sensors. The physiological parameter system may also have quality indicators relating to confidence in the parameter inputs. A processor is adapted to combine the parameter inputs, quality indicators and predetermined limits for the parameters inputs and quality indicators so as to generate alarm outputs or control outputs or both.
    Type: Application
    Filed: August 7, 2008
    Publication date: December 4, 2008
    Applicant: Masimo Corporation
    Inventors: Ammar Al-Ali, John Graybeal, Massi E. Kiani, Michael Petterson
  • Patent number: 7438683
    Abstract: An application identification sensor comprises a plurality of emitters configured to transmit light into a tissue site and a detector configured to receive the light after tissue absorption. The detector generates a signal responsive to the intensity of the light and communicates the signal to a monitor. An information element is readable by the monitor so as to identify a sensor application. The monitor presets at least one user-selectable operational parameter in response to the information element.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: October 21, 2008
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Massi E. Kiani, Walter M. Weber
  • Patent number: 7428432
    Abstract: The present disclosure includes a pulse oximeter attachment having an accessible memory. In one embodiment, the pulse oximeter attachment stores calibration data, such as, for example, calibration data associated with a type of a sensor, a calibration curve, or the like. The calibration data is used to calculate physiological parameters of pulsing blood.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: September 23, 2008
    Assignee: Masimo Corporation
    Inventors: Ammar Al Ali, Don Carothers, David Dalke, Mohamed K. Diab, Julian Goldman, Massi E. Kiani, Michael Lee, Jerome Novak, Robert Smith, Val E. Vaden
  • Patent number: 7415297
    Abstract: A physiological parameter system has one or more parameter inputs responsive to one or more physiological sensors. The physiological parameter system may also have quality indicators relating to confidence in the parameter inputs. A processor is adapted to combine the parameter inputs, quality indicators and predetermined limits for the parameters inputs and quality indicators so as to generate alarm outputs or control outputs or both.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: August 19, 2008
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, John Graybeal, Massi E. Kiani, Michael Petterson
  • Publication number: 20080188733
    Abstract: A physiological parameter system has one or more parameter inputs responsive to one or more physiological sensors. The physiological parameter system may also have quality indicators relating to confidence in the parameter inputs. A processor is adapted to combine the parameter inputs, quality indicators and predetermined limits for the parameters inputs and quality indicators so as to generate alarm outputs or control outputs or both.
    Type: Application
    Filed: December 21, 2007
    Publication date: August 7, 2008
    Inventors: Ammar Al-Ali, John Graybeal, Massi E. Kiani, Michael Petterson, Chris Kilpatrick
  • Publication number: 20080177160
    Abstract: A sensor, such as, for example, a gravity-responsive sensor, provides an output used to select an orientation of a display of a display device. For example, the output may indicate that the orientation of the display should comprise a portrait or landscape orientation, an orientation rotated, such as, for example, ninety degrees (90°), one hundred and eighty degrees (180°), two hundred and seventy degrees (270°), or the like. In addition, one or more manual switches, buttons, or display icons may be actuated or otherwise selected to manually set the orientation of the display.
    Type: Application
    Filed: February 28, 2008
    Publication date: July 24, 2008
    Applicant: MASIMO CORPORATION
    Inventors: Ammar Al Ali, Don Carothers, David Dalke, Mohamed K. Diab, Julian Goldman, Massi E. Kiani, Michael Lee, Jerome Novak, Robert Smith, Val E. Vaden
  • Patent number: 7341559
    Abstract: An embodiment of an ear sensor assembly comprises an emitter pad and a detector pad. A clip is configured to removably retain each of the pads. The clip has an open position for placement on an ear tissue site and a closed position for securing the pads to opposite sides of the site. The assembly includes a sensor connector adapted to electrically communicate with a host instrument. A sensor cable has a first end terminating at the pads and a second end terminating at the sensor connector and provides electrical communications between the pads and the connector. In one embodiment, one or more silicone lenses or removable adhesive tabs aid in relieving patient discomfort and pressure necrosis.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 11, 2008
    Assignee: Masimo Corporation
    Inventors: Christian Schulz, Massi E. Kiani, Eugene Mason
  • Patent number: 7142901
    Abstract: A monitor has a primary input from which a spectral characteristic of a tissue site can be derived. The monitor also has a secondary input from which at least one parameter can be determined. A compensation relationship of the spectral characteristic, the parameter and a compensated physiological measurement is determined. A processor is configured to output the compensated physiological measurement in response to the primary input and the secondary input utilizing the compensation relationship.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: November 28, 2006
    Assignee: Masimo Corporation
    Inventors: Massi E. Kiani, Mohamed Diab, Ammar Al-Ali, Walter M. Weber
  • Patent number: 7024233
    Abstract: According to some embodiments of the present invention, a display is used to show a signal from a physiological sensor as well as an indication of the signal's quality. While this indication of the signal's quality may be provided in a number of ways, it is preferably provided by changing a color on the display.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: April 4, 2006
    Assignee: Masimo Corporation
    Inventors: Ammar Al Ali, Divya S. Breed, Jerome J. Novak, Massi E. Kiani
  • Patent number: 6996427
    Abstract: A data confidence indicator includes a plurality of physiological data and a plurality of signal quality measures derived from a physiological sensor output, and a plurality of comparator outputs each responsive to one of the measures and a corresponding one of a plurality of thresholds. An alert trigger output combines the comparator outputs. A low signal quality warning is generated in response to the alert trigger output, wherein the thresholds are set so that the warning occurs during a time period when there is low confidence in the data. The alert may be in the form of a message generated on the pulse oximeter display to warn that the accuracy of saturation and pulse rate measurements may be compromised. A confidence-based alarm utilizes signal quality measures to reduce the probability of false alarms when data confidence is low and to reduce the probability of missed events when data confidence is high.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: February 7, 2006
    Assignee: Masimo Corporation
    Inventors: Ammar Al Ali, Divya S. Breed, Jerome J. Novak, Massi E. Kiani
  • Patent number: 6993371
    Abstract: An adapter allows the interconnection of a sensor originating from one manufacturer to be coupled with conventionally incompatible monitors originating from other manufacturers to form a properly functioning pulse oximetry system. The adapter matches a sensor driver in a monitor to the current requirements and light source configuration of a sensor. The adapter also matches a sensor's light detector signal level to the dynamic range requirements of a monitor preamplifier. Further, the adapter provides compatible sensor calibration, sensor type and security information to a monitor. The adapter may have a self-contained power source or it may derive power from the monitor, allowing both passive and active adapter components. The adapter is particular suited as an adapter cable, replacing a conventional patient cable or sensor cable as the interconnection between a sensor to a monitor in a pulse oximetry system.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: January 31, 2006
    Assignee: Masimo Corporation
    Inventors: Massi E. Kiani, Robert A. Smith, David R. Tobler
  • Patent number: 6934570
    Abstract: A physiological sensor combination has a flexible substrate configured to attach to a tissue site. Multiple sensors are disposed on the substrate, which generate physiological signals. Each of the signals is responsive to a different physiological parameter. Conductors are carried on the substrate and routed between the sensors and at least one connector. The connector is configured to communicate the physiological signals to at least one monitor, which derives measurements of the parameters.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: August 23, 2005
    Assignee: Masimo Corporation
    Inventors: Massi E. Kiani, Ammar Al-Ali, Ronald Coverston, Gene Mason, Fred Robertson
  • Patent number: 6898452
    Abstract: An improved pulse oximeter provides for simultaneous, noninvasive oxygen status and photoplethysmograph measurements at both single and multiple sites. In particular, this multiple-site, multiple-parameter pulse oximeter, or “stereo pulse oximeter” simultaneously measures both arterial and venous oxygen saturation at any specific site and generates a corresponding plethysmograph waveform. A corresponding computation of arterial minus venous oxygen saturation is particularly advantageous for oxygen therapy management. An active pulse-inducing mechanism having a scattering-limited drive generates a consistent pulsatile venous signal utilized for the venous blood measurements. The stereo pulse oximeter also measures arterial oxygen saturation and plethysmograph shape parameters across multiple sites.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: May 24, 2005
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Mohamed K. Diab, Massi E. Kiani, Robert James Kopotic, David Tobler
  • Publication number: 20040242980
    Abstract: A monitor has a primary input from which a spectral characteristic of a tissue site can be derived. The monitor also has a secondary input from which at least one parameter can be determined. A compensation relationship of the spectral characteristic, the parameter and a compensated physiological measurement is determined. A processor is configured to output the compensated physiological measurement in response to the primary input and the secondary input utilizing the compensation relationship.
    Type: Application
    Filed: November 14, 2003
    Publication date: December 2, 2004
    Inventors: Massi E. Kiani, Mohamed Diab, Ammar Al-Ali, Walter M. Weber
  • Patent number: 6771994
    Abstract: The present invention provides a number of improvements that can be incorporated into a pulse oximeter probe to detect when a probe has become dislodged from a patient and/or to prevent a probe-off condition. A probe-off condition occurs when the optical probe becomes partially or completely dislodged from the patient, but continues to detect an AC signal within the operating region of the pulse oximeter. In one aspect, the present invention provides electrical contacts that contact the skin of a patient when the probe is properly attached. In another aspect, the present invention provides a number of louvers placed in front of the sensor's photodetector to filter out oblique light rays that do not originate from a point in front of the detector. Accordingly, if the emitter and photodetector are not properly aligned, the photodetector will not produce a signal within the valid operating range of the pulse oximeter.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: August 3, 2004
    Assignee: Masimo Corporation
    Inventors: Massi E. Kiani, Mohamed K. Diab
  • Patent number: 6770028
    Abstract: A pulse oximeter has an integrated mode in which it operates as a plug-in module for a multiparameter patient monitoring system (MPMS). The pulse oximeter also has a portable mode in which operates separately from the MPMS as a battery-powered handheld or standalone instrument. The pulse oximeter has a sensor port that receives a photo-plethysmographic signal as input to an internal processor. The pulse oximeter processes this sensor signal to derive oxygen saturation and pulse rate measurements. In the portable mode, this information is provided on its display, and stored in memory for trend capability. A keypad provides a user interface for operational control in the portable mode. In the integrated mode, the pulse oximeter provides oxygen saturation and pulse rate measurements to the MPMS through a communications interface, along with previously stored trend data, and displayed on the MPMS monitor. The MPMS also provides external power and operational control of the pulse oximeter in the integrated mode.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: August 3, 2004
    Assignee: Masimo Corporation
    Inventors: Ammar Al Ali, Don Carothers, David Dalke, Mohamed K. Diab, Julian Goldman, Massi E. Kiani, Michael Lee, Jerome Novak, Robert Smith, Val E. Vaden