Patents by Inventor Massimiliano Merli

Massimiliano Merli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953813
    Abstract: Disclosed herein is a microelectromechanical device that features a fixed structure defining a cavity, a tiltable structure elastically suspended within the cavity, and a piezoelectrically driven actuation structure that rotates the tiltable structure about a first rotation axis. The actuation structure includes driving arms with piezoelectric material, elastically coupled to the tiltable structure by decoupling elastic elements that are stiff to out-of-plane movements but compliant to torsional movements. The tiltable structure is elastically coupled to the fixed structure at the first rotation axis using elastic suspension elements, while the fixed structure forms a frame surrounding the cavity with supporting elements. A lever mechanism is coupled between a supporting element and a driving arm.
    Type: Grant
    Filed: April 14, 2023
    Date of Patent: April 9, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo' Boni, Roberto Carminati, Massimiliano Merli
  • Patent number: 11933968
    Abstract: A microelectromechanical (MEMS) structure includes a fixed frame internally defining a cavity, and a mobile mass suspended in the cavity and movable with a first resonant rotational mode about a first rotation axis and with a second resonant rotational mode about a second rotation axis orthogonal to the first. A pair of supporting elements extends in the cavity, is rigidly coupled to the fixed frame, and is elastically deformable to cause rotation of the mobile mass about the first rotation axis. A pair of elastic-coupling elements is elastically coupled between the mobile mass and the first pair of supporting elements. Each of the elastic-coupling elements includes a first and second elastic portions, the first elastic portion being compliant to torsion about the second rotation axis. The second elastic portion is compliant to bending outside of a horizontal plane of main extension of the MEMS structure.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: March 19, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo' Boni, Roberto Carminati, Massimiliano Merli
  • Patent number: 11933966
    Abstract: Disclosed herein is a method of making a microelectromechanical (MEMS) device. The method includes, in a single structural layer, affixing a tiltable structure to an anchorage portion with first and second supporting arms extending between the anchorage portion and opposite sides of the tiltable structure, and forming first and second resonant piezoelectric actuation structures extending between a constraint portion of the first supporting arm and the anchorage portion, on opposite sides of the first supporting arm. The method further includes coupling a handling wafer underneath the structural layer to define a cavity therebetween, and forming a passivation layer over the structural layer, the passivation layer having contact openings defined therein for routing metal regions for electrical coupling to respective electrical contact pads, the electrical contact pads being electrically connected to the first and second resonant piezoelectric actuation structures.
    Type: Grant
    Filed: April 7, 2022
    Date of Patent: March 19, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventors: Roberto Carminati, Nicolo' Boni, Massimiliano Merli
  • Publication number: 20240019688
    Abstract: Disclosed herein is a micro-electro-mechanical mirror device having a fixed structure defining an external frame delimiting a cavity, a tiltable structure extending into the cavity, a reflecting surface carried by the tiltable structure and having a main extension in a horizontal plane, and an actuation structure coupled between the tiltable structure and the fixed structure. The actuation structure is formed by a first pair of actuation arms causing rotation of the tiltable structure around a first axis parallel to the horizontal plane. The actuation arms are elastically coupled to the tiltable structure through elastic coupling elements and are each formed by a bearing structure and a piezoelectric structure. The bearing structure of each actuation arm is formed by a soft region of a first material and the elastic coupling elements are formed by a bearing layer of a second material, the second material having greater stiffness than the first material.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Applicant: STMicroelectronics S.r.l.
    Inventors: Massimiliano MERLI, Roberto CARMINATI, Nicolo' BONI, Sonia COSTANTINI, Carlo Luigi PRELINI
  • Publication number: 20230408808
    Abstract: A microelectromechanical device has a first tiltable mirror structure extending in a horizontal plane defined by first and second horizontal axes and includes a fixed structure defining a frame delimiting a cavity, a tiltable element carrying a reflecting region, elastically suspended above the cavity having first and second median axes of symmetry, elastically coupled to the frame by first and second coupling structures on opposite sides of the second horizontal axis. The first tiltable mirror structure has a driving structure coupled to the tiltable element to cause rotation around the first horizontal axis. The first tiltable mirror structure is asymmetrical with respect to the second horizontal axis and has, along the first horizontal axis, a first extension on a first side of the second horizontal axis, and a second extension greater than the first extension, on a second side of the second horizontal axis opposite to the first side.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 21, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Publication number: 20230324674
    Abstract: A microelectromechanical mirror device has, in a die of semiconductor material: a fixed structure defining a cavity; a tiltable structure carrying a reflecting region, elastically suspended above the cavity and having a main extension in a horizontal plane; at least one first pair of driving arms, carrying respective piezoelectric structures which can be biased to generate a driving force that causes rotation of the tiltable structure about a rotation axis parallel to a first horizontal axis of the horizontal plane; elastic suspension elements, which elastically couple the tiltable structure to the fixed structure at the rotation axis and are rigid to movements out of the horizontal plane and compliant to torsion about the rotation axis. In particular, the driving arms of the first pair are magnetically coupled to the tiltable structure to cause its rotation about the rotation axis by magnetic interaction, following biasing of the respective piezoelectric structures.
    Type: Application
    Filed: April 5, 2023
    Publication date: October 12, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI, Carlo Luigi PRELINI, Tarek AFIFI AFIFI
  • Publication number: 20230288696
    Abstract: A microelectromechanical-mirror device has a fixed structure defining an external frame delimiting a cavity, an internal frame arranged above the cavity and defining a window, and a tiltable structure with a reflective surface and arranged in the window. Elastically coupled to the internal frame by first and second coupling elastic elements. An actuation structure is coupled to the internal frame to cause the rotation of the tiltable structure around first and second axes. The actuation structure has a first pair of driving arms, elastically coupled to the internal frame and carrying piezoelectric material regions to cause rotation of the tiltable structure around the first axis, and a further pair of driving arms carrying piezoelectric material regions to cause rotation of the tiltable structure around the second axis and interposed between the fixed structure and the internal frame, to which they are elastically coupled by first and second suspension elastic elements.
    Type: Application
    Filed: March 7, 2023
    Publication date: September 14, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Publication number: 20230249960
    Abstract: This disclosure pertains to a microelectromechanical systems (MEMS) device with a tiltable structure, a fixed supporting structure, and an actuation structure with driving arms connected to the tiltable structure by elastic decoupling elements. Described herein, particularly, is a planar stop structure between the driving arms and the tiltable structure, which functions to limit movement in the tiltable plane. This stop structure includes a first projection/abutment surface pair formed by a projection extending from a driving arm and an abutment surface formed by a recess in the tiltable structure. The projection and abutment surface are adjacent and spaced apart in the device's rest condition.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Publication number: 20230251556
    Abstract: Disclosed herein is a microelectromechanical device that features a fixed structure defining a cavity, a tiltable structure elastically suspended within the cavity, and a piezoelectrically driven actuation structure that rotates the tiltable structure about a first rotation axis. The actuation structure includes driving arms with piezoelectric material, elastically coupled to the tiltable structure by decoupling elastic elements that are stiff to out-of-plane movements but compliant to torsional movements. The tiltable structure is elastically coupled to the fixed structure at the first rotation axis using elastic suspension elements, while the fixed structure forms a frame surrounding the cavity with supporting elements. A lever mechanism is coupled between a supporting element and a driving arm.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Patent number: 11673799
    Abstract: To manufacture an oscillating structure, a wafer is processed by: forming torsional elastic elements; forming a mobile element connected to the torsional elastic elements; processing the first side of the wafer to form a mechanical reinforcement structure; and processing the second side of said wafer by steps of chemical etching, deposition of metal material, and/or deposition of piezoelectric material. Processing of the first side of the wafer is carried out prior to processing of the second side of the wafer so as not to damage possible sensitive structures formed on the first side of the wafer.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: June 13, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Enri Duqi, Nicolo′ Boni, Lorenzo Baldo, Massimiliano Merli, Roberto Carminati
  • Patent number: 11655140
    Abstract: A micro-electro-mechanical device is formed by a fixed structure having a cavity. A tiltable structure is elastically suspended over the cavity and has a main extension in a tiltable plane and is rotatable about a rotation axis parallel to the tiltable plane. A piezoelectric actuation structure includes first and second driving arms carrying respective piezoelectric material regions and extending on opposite sides of the rotation axis. The first and the second driving arms are rigidly coupled to the fixed structure and are elastically coupled to the tiltable structure. During operation, a stop structure limits movements of the tiltable structure with respect to the actuation structure along a planar direction perpendicular to the rotation axis. The stop structure has a first planar stop element formed between the first driving arm and the tiltable structure and a second planar stop element formed between the second driving arm and the tiltable structure.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: May 23, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo' Boni, Roberto Carminati, Massimiliano Merli
  • Patent number: 11656539
    Abstract: A microelectromechanical device includes a fixed structure defining a cavity with a tiltable structure that is elastically suspended in the cavity. A piezoelectrically driven actuation structure, interposed between the tiltable structure and the fixed structure, is biased for causing rotation of the tiltable structure about a first rotation axis belonging to a horizontal plane in which the tiltable structure rests. The actuation structure includes a pair of driving arms carry respective regions of piezoelectric material and are elastically coupled to the tiltable structure on opposite sides of the first rotation axis through respective elastic decoupling elements. The elastic decoupling elements exhibit stiffness in regard to movements out of the horizontal plane and compliance to torsion about the first rotation axis.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: May 23, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo′ Boni, Roberto Carminati, Massimiliano Merli
  • Publication number: 20230035607
    Abstract: A microelectromechanical (MEMS) structure includes a fixed frame internally defining a cavity, and a mobile mass suspended in the cavity and movable with a first resonant rotational mode about a first rotation axis and with a second resonant rotational mode about a second rotation axis orthogonal to the first. A pair of supporting elements extends in the cavity, is rigidly coupled to the fixed frame, and is elastically deformable to cause rotation of the mobile mass about the first rotation axis. A pair of elastic-coupling elements is elastically coupled between the mobile mass and the first pair of supporting elements. Each of the elastic-coupling elements includes a first and second elastic portions, the first elastic portion being compliant to torsion about the second rotation axis. The second elastic portion is compliant to bending outside of a horizontal plane of main extension of the MEMS structure.
    Type: Application
    Filed: October 12, 2022
    Publication date: February 2, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Patent number: 11520138
    Abstract: A microelectromechanical structure includes a body of semiconductor material having a fixed frame internally defining a cavity, a mobile mass elastically suspended in the cavity and movable with a first resonant movement about a first rotation axis and with a second resonant movement about a second rotation axis, orthogonal to the first axis. First and second pairs of supporting elements, extending in cantilever fashion in the cavity, are rigidly coupled to the frame, and are piezoelectrically deformable to cause rotation of the mobile mass about the first and second rotation axes. First and second pairs of elastic-coupling elements are elastically coupled between the mobile mass and the first and the second pairs of supporting elements. The first and second movements of rotation of the mobile mass are decoupled from one another and do not interfere with one another due to the elastic-coupling elements of the first and second pairs.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: December 6, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo' Boni, Roberto Carminati, Massimiliano Merli
  • Publication number: 20220373785
    Abstract: A microelectromechanical mirror device has, in a die of semiconductor material: a fixed structure defining a cavity; a tiltable structure carrying a reflecting region elastically suspended above the cavity; at least a first pair of driving arms coupled to the tiltable structure and carrying respective piezoelectric material regions which may be biased to cause a rotation thereof around at least one rotation axis; elastic suspension elements coupling the tiltable structure elastically to the fixed structure and which are stiff with respect to movements out of the horizontal plane and yielding with respect to torsion; and a piezoresistive sensor configured to provide a detection signal indicative of the rotation of the tiltable structure. At least one test structure is integrated in the die to provide a calibration signal indicative of a sensitivity variation of the piezoresistive sensor in order to calibrate the detection signal.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 24, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Gianluca MENDICINO, Enri DUQI, Roberto CARMINATI, Massimiliano MERLI
  • Publication number: 20220350134
    Abstract: A process for manufacturing a microelectromechanical mirror device includes, in a semiconductor wafer, defining a support frame, a plate connected to the support frame so as to be orientable around at least one rotation axis, and cantilever structures extending from the support frame and coupled to the plate so that bending of the cantilever structures causes rotations of the plate around the at least one rotation axis. The process further includes forming piezoelectric actuators on the cantilever structures, forming pads on the support frame, and forming spacer structures protruding from the support frame more than both the pads and the stacks of layers forming the piezoelectric actuators.
    Type: Application
    Filed: April 26, 2022
    Publication date: November 3, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Roberto CARMINATI, Nicolo' BONI, Irene MARTINI, Massimiliano MERLI, Laura OGGIONI
  • Publication number: 20220342203
    Abstract: A microelectromechanical mirror device includes a fixed structure defining a cavity, a tiltable structure elastically suspended above the cavity and carrying a reflecting surface, and having a main extension in a horizontal plane. A first pair of driving arms carry respective piezoelectric material regions that are biased to cause a rotation of the tiltable structure around a first rotation axis parallel to a first horizontal axis of the horizontal plane, and elastically coupled to the tiltable structure. Elastic suspension elements that couple the tiltable structure to the fixed structure at the first rotation axis are stiff with respect to movements out of the horizontal plane and yielding with respect to torsion around the first rotation axis, and further extend between the tiltable structure and the fixed structure. The elastic suspension elements have an asymmetrical arrangement on opposite sides of the tiltable structure along the first rotation axis.
    Type: Application
    Filed: April 22, 2022
    Publication date: October 27, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Nicolo' BONI, Roberto CARMINATI, Massimiliano MERLI
  • Patent number: 11448871
    Abstract: A micromechanical device includes a fixed structure, a mobile portion rotatable about a first rotation axis, and a first actuation structure arranged between the fixed structure and the mobile portion to enable rotation of the mobile portion about the first rotation axis. The mobile portion includes a supporting structure, a tiltable platform rotatable about a second rotation axis, transverse to the first rotation axis, and a second actuation structure coupled between the tiltable platform and the supporting structure. Stiffening elements are arranged between the supporting structure and the fixed structure. The micromechanical device may be used within a pico-projector.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: September 20, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo′ Boni, Roberto Carminati, Massimiliano Merli
  • Publication number: 20220229287
    Abstract: Disclosed herein is a method of making a microelectromechanical (MEMS) device. The method includes, in a single structural layer, affixing a tiltable structure to an anchorage portion with first and second supporting arms extending between the anchorage portion and opposite sides of the tiltable structure, and forming first and second resonant piezoelectric actuation structures extending between a constraint portion of the first supporting arm and the anchorage portion, on opposite sides of the first supporting arm. The method further includes coupling a handling wafer underneath the structural layer to define a cavity therebetween, and forming a passivation layer over the structural layer, the passivation layer having contact openings defined therein for routing metal regions for electrical coupling to respective electrical contact pads, the electrical contact pads being electrically connected to the first and second resonant piezoelectric actuation structures.
    Type: Application
    Filed: April 7, 2022
    Publication date: July 21, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Roberto CARMINATI, Nicolo' BONI, Massimiliano MERLI
  • Patent number: 11353694
    Abstract: A microelectromechanical mirror device has a fixed structure defining a cavity. A tiltable structure carrying a reflecting surface is elastically suspended above the cavity with a main extension in a horizontal plane. Elastic elements are coupled to the tiltable structure and at least one first pair of driving arms, which carry respective regions of piezoelectric material, are biasable to cause rotation of the tiltable structure about at least one first axis of rotation parallel to a first horizontal axis of the horizontal plane. The driving arms are elastically coupled to the tiltable structure on opposite sides of the first axis of rotation and are interposed between the tiltable structure and the fixed structure. The driving arms have a thickness, along an orthogonal axis transverse to the horizontal plane, smaller than a thickness of at least some of the elastic elements coupled to the tiltable structure.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: June 7, 2022
    Assignee: STMicroelectronics S.r.l.
    Inventors: Nicolo' Boni, Roberto Carminati, Massimiliano Merli