Patents by Inventor Massimiliano Pavan

Massimiliano Pavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7995886
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 9, 2011
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Patent number: 7861484
    Abstract: A method for making a sound-insulating load-bearing floor, includes the following steps: applying a sound-insulating material over a load-bearing floor as to form a continuous coating layer; allowing the continuous coating layer to harden; applying a covering floor over said hardened continuous coating layer; wherein the sound-insulating material includes: 40% by weight to 95% by weight, preferably 60% by weight to 90% by weight, with respect to the total weight of the sound-insulating material, of at least one rubber in a subdivided form; 5% by weight to 60% by weight, preferably 10% by weight to 40% by weight, with respect to the total weight of the sound-insulating material, of at least one binding agent including: a first, component including at least one organic compound having at least one acid functional group or a derivative thereof, the first component having a Brookfield viscosity, measured at 23° C., of 0.1 Pa·s to 100 Pa·s, preferably 0.2 Pa·s to 50 Pa·s, more preferably 0.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: January 4, 2011
    Assignee: Pirelli & C. S.p.A.
    Inventors: Massimiliano Pavan, Elio Ganci, Raffaella Donetti, Massimo Marini, Diego Tirelli, Franco Peruzzotti
  • Patent number: 7865047
    Abstract: Telecommunication cable having an elongated element housing at least one transmitting element. The elongated element has a water-soluble polymeric composition of a vinyl alcohol/vinyl acetate copolymer having a saponification degree of about 60% to about 95%; a plasticizer; a hydrolysis stabilizer compound having a chelant group having two hydrogen atoms bonded to two respective heteroatoms selected from nitrogen, oxygen and sulfur. The two hydrogen atoms have a distance between each other of 4.2×10?10 m to 5.8×10?10 m. The stabilizer compound is present in an amount of at least 0.75 mmoles per 100 g of copolymer. The elongated element is in particular a buffer tube housing a plurality of optical fibers. The presence of the stabilizer reduces the increase of the hydrolysis degree of the copolymer upon aging, thus maintaining the desired water blocking properties of the copolymer.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: January 4, 2011
    Assignee: Prysmian Cavi e Sistemi Energia S.R.L.
    Inventors: Mauro Maritano, Raffaella Donetti, Antonio Campana, Massimiliano Pavan, Raimondo Scordamaglia
  • Patent number: 7861477
    Abstract: A method for making a sound-insulating load-bearing floor, includes the following steps: providing a load-bearing floor; applying a sound-insulating material onto the load-bearing floor so as to form a substantially continuous coating layer; allowing the substantially continuous coating layer to dry; wherein the sound-insulating material includes: 40% by weight to 95% by weight, preferably 60% by weight to 90% by weight, with respect to the total weight of the sound-insulating material, of at least one rubber in a subdivided form; 5% by weight to 60% by weight, preferably 10% by weight to 40% by weight, with respect to the total weight of the sound-insulating material, of at least one binding agent including at least one water-dispersible polymer having a glass transition temperature (Tg) of ?50° C. to +50° C., preferably of ?40° C. to +10° C.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: January 4, 2011
    Assignee: Pirelli & C. S.p.A.
    Inventors: Raffaella Donetti, Massimo Marini, Massimiliano Pavan, Elio Ganci, Diego Tirelli, Franco Perruzzotti
  • Patent number: 7829164
    Abstract: A utility pole includes a thermoplastic composite material including: (a) at least one olefin polymer; and (b) at least one reinforcing fiber material embedded in the at least one olefin polymer, the thermoplastic composite material having a specific tensile strength higher than or equal to 15 MPa/(gr/cm3), preferably 20 MPa/(gr/cm3) to 200 MPa/(gr/cm3), and more preferably 30 MPa/(gr/cm3) to 150 MPa/(gr/cm3) and a specific tensile modulus higher than or equal to 2000 MPa/(gr/cm3), preferably 2500 MPa/(gr/cm3) to 20000 MPa/(gr/cm3), and more preferably 3000 MPa/(gr/cm3) to 15000 MPa/(gr/cm3).
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: November 9, 2010
    Assignee: Pirelli & C. S.p.A.
    Inventors: Luca Castellani, Stefano Testi, Massimiliano Pavan, Thomas Ponta
  • Patent number: 7801404
    Abstract: Optical cable having at least one tubular element of polymeric material and at least one transmission element housed within said tubular element. The polymeric material is made from a polymeric composition having (a) at least one olefin polymer; (b) at least one inorganic filler; and (c) at least one olefin polymer including at least one functional group. The at least one olefin polymer including at least one functional group (c) is present in the polymeric composition in an amount of about 3 parts by weight to about 10 parts by weight, preferably about 5 parts by weight to about 8 parts by weight, with respect to 100 parts by weight of the olefin polymer (a).
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 21, 2010
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimiliano Pavan, Giovanni Brandi, Mauro Maritano
  • Patent number: 7713451
    Abstract: A process for manufacturing a water-resistant telecommunication cable. The cable has a solid and compact element having a water-soluble polymer material having vinyl alcohol/vinyl acetate copolymer having a hydrolysis degree of 60-95% and a polymerisation degree higher than 1,800 and at least one solid low-melting and one solid high melting plasticizers. The process produces continuously the water-soluble polymer material by separately feeding, in sequence, a multi-screw extruder, in the flow direction, with the copolymer and the high melting plasticizer melting and mixing them while transporting them through the extruder, and with the low melting plasticizer, melting and mixing them with the copolymer and the high melting plasticizer, subsequently homogenizing the copolymer and the plasticizers and finally discharging the melt, at a temperature lower than or equal to 205° C. A process for extruding the above PVA based water-soluble polymer material.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 11, 2010
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimiliano Pavan, Stefano Testi, Raffaella Donetti, Cristiano Puppi, Mauro Maritano
  • Publication number: 20090324951
    Abstract: A utility pole includes a thermoplastic composite material including: (a) at least one olefin polymer; and (b) at least one reinforcing fiber material embedded in the at least one olefin polymer, the thermoplastic composite material having a specific tensile strength higher than or equal to 15 MPa/(gr/cm3), preferably 20 MPa/(gr/cm3) to 200 MPa/(gr/cm3), and more preferably 30 MPa/(gr/cm3) to 150 MPa/(gr/cm3) and a specific tensile modulus higher than or equal to 2000 MPa/(gr/cm3), preferably 2500 MPa/(gr/cm3) to 20000 MPa/(gr/cm3), and more preferably 3000 MPa/(gr/cm3) to 15000 MPa/(gr/cm3).
    Type: Application
    Filed: October 7, 2005
    Publication date: December 31, 2009
    Inventors: Luca Castellani, Stefano Testi, Massimiliano Pavan, Thomas Ponta
  • Publication number: 20090297106
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Application
    Filed: September 27, 2004
    Publication date: December 3, 2009
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Publication number: 20090293413
    Abstract: A method for making a sound-insulating load-bearing floor, includes the following steps: providing a load-bearing floor; applying a sound-insulating material onto the load-bearing floor so as to form a substantially continuous coating layer; allowing the substantially continuous coating layer to dry; wherein the sound-insulating material includes: 40% by weight to 95% by weight, preferably 60% by weight to 90% by weight, with respect to the total weight of the sound-insulating material, of at least one rubber in a subdivided form; 5% by weight to 60% by weight, preferably 10% by weight to 40% by weight, with respect to the total weight of the sound-insulating material, of at least one binding agent including at least one water-dispersible polymer having a glass transition temperature (Tg) of ?50° C. to +50° C., preferably of ?40° C. to +10° C.
    Type: Application
    Filed: June 10, 2005
    Publication date: December 3, 2009
    Applicant: PIRELLI & C. S.p.A.
    Inventors: Rafaella Donetti, Massino Marini, Massimiliano Pavan, Elio Ganci, Diego Tirelli, Franco Peruzzotti
  • Patent number: 7536071
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least one micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa·s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: May 19, 2009
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Publication number: 20080304798
    Abstract: Optical cable having at least one tubular element of polymeric material and at least one transmission element housed within said tubular element. The polymeric material is made from a polymeric composition having (a) at least one olefin polymer; (b) at least one inorganic filler; and (c) at least one olefin polymer including at least one functional group. The at least one olefin polymer including at least one functional group (c) is present in the polymeric composition in an amount of about 3 parts by weight to about 10 parts by weight, preferably about 5 parts by weight to about 8 parts by weight, with respect to 100 parts by weight of the olefin polymer (a).
    Type: Application
    Filed: August 28, 2003
    Publication date: December 11, 2008
    Applicant: PIRELLI & C.S.P.A.
    Inventors: Massimiliano Pavan, Giovanni Brandi, Mauro Maritano
  • Publication number: 20080250751
    Abstract: A method for making a sound-insulating load-bearing floor, includes the following steps: applying a sound-insulating material over a load-bearing floor as to form a continuous coating layer; allowing the continuous coating layer to harden; applying a covering floor over said hardened continuous coating layer; wherein the sound-insulating material includes: 40% by weight to 95% by weight, preferably 60% by weight to 90% by weight, with respect to the total weight of the sound-insulating material, of at least one rubber in a subdivided form; 5% by weight to 60% by weight, preferably 10% by weight to 40% by weight, with respect to the total weight of the sound-insulating material, of at least one binding agent including: a first, component including at least one organic compound having at least one acid functional group or a derivative thereof, the first component having a Brookfield viscosity, measured at 23° C., of 0.1 Pa·s to 100 Pa·s, preferably 0.2 Pa·s to 50 Pa·s, more preferably 0.
    Type: Application
    Filed: March 4, 2005
    Publication date: October 16, 2008
    Inventors: Massimiliano Pavan, Elio Ganci, Raffaella Donetti, Massimo Marini, Diego Tirelli, Franco Peruzzotti
  • Publication number: 20080212927
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least ones micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa-s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Application
    Filed: September 27, 2004
    Publication date: September 4, 2008
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Publication number: 20070246848
    Abstract: A process for manufacturing a water-resistant telecommunication cable. The cable has a solid and compact element having a water-soluble polymer material having vinyl alcohol/vinyl acetate copolymer having a hydrolysis degree of 60-95% and a polymerisation degree higher than 1,800 and at least one solid low-melting and one solid high melting plasticizers. The process produces continuously the water-soluble polymer material by separately feeding, in sequence, a multi-screw extruder, in the flow direction, with the copolymer and the high melting plasticizer melting and mixing them while transporting them through the extruder, and with the low melting plasticizer, melting and mixing them with the copolymer and the high melting plasticizer, subsequently homogenizing the copolymer and the plasticizers and finally discharging the melt, at a temperature lower than or equal to 205° C. A process for extruding the above PVA based water-soluble polymer material.
    Type: Application
    Filed: October 29, 2003
    Publication date: October 25, 2007
    Inventors: Massimiliano Pavan, Stefano Testi, Raffaella Donetti, Cristiano Puppi, Mauro Maritano
  • Patent number: 7155094
    Abstract: A water-resistant telecommunication cable is disclosed comprising a solid and compact element surrounding at least one optical transmitting element, wherein the element is made from a vinyl alcohol/vinyl acetate copolymer having a hydrolysis degree of about 60% to about 95% and a polymerization degree higher than about 2,500; at least a first solid plasticizer having a melting point between 50° and 110° C., and a second solid plasticizer having a melting point equal or higher than 140° C., in an amount of about 10–30 and 1–10 parts by weight per hundred parts by weight of the copolymer, respectively; the water-soluble polymer material showing: a complex modulus (G*) equal to or higher than 2.5 106 Mpa; a ratio of the viscous modulus to the elastic modulus (tan ?) equal to or lower than 2.30; and a glass transition temperature (Tg) of about 20° to about 35° C.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: December 26, 2006
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Raffaella Donetti, Massimiliano Pavan, Giovanni Brandi, Mauro Maritano
  • Publication number: 20060127015
    Abstract: A water-resistant telecommunication cable is disclosed comprising a solid and compact element surrounding at least one optical transmitting element, wherein the element is made from a vinyl alcohol/vinyl acetate copolymer having a hydrolysis degree of about 60% to about 95% and a polymerization degree higher than about 2,500; at least a first solid plasticizer having a melting point between 50° and 110° C., and a second solid plasticizer having a melting point equal or higher than 140° C., in an amount of about 10-30 and 1-10 parts by weight per hundred parts by weight of the copolymer, respectively; the water-soluble polymer material showing: a complex modulus (G*) equal to or higher than 2.5 106 Mpa; a ratio of the viscous modulus to the elastic modulus (tan?) equal to or lower than 2.30; and a glass transition temperature (Tg) of about 20° to about 35° C.
    Type: Application
    Filed: December 27, 2002
    Publication date: June 15, 2006
    Inventors: Raffaella Donetti, Massimiliano Pavan, Giovanni Brandi, Mauro Maritano
  • Patent number: 6993226
    Abstract: Telecommunication cable having a tubular element, in particular a buffer tube housing at least one transmission element. The tubular element has a polymeric composition which allows an easy tearing of the element, in order to get access to the transmission element housed therein. The tubular element is made from a polymeric composition having a heterophasic olefin copolymer which has at least one amorphous phase having sequences deriving from copolymerization of at least two different olefin monomers, at least a first crystalline phase having sequences deriving from the homopolymerization of a first olefin monomer and at least a second crystalline phase having sequences deriving from the homopolymerization of a second olefin monomer.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: January 31, 2006
    Assignee: Pirelli & C. S.p.A.
    Inventors: Luca Castellani, Giovanni Brandi, Massimiliano Pavan
  • Publication number: 20050175834
    Abstract: Telecommunication cable having an elongated element housing at least one transmitting element. The elongated element has a water-soluble polymeric composition of a vinyl alcohol/vinyl acetate copolymer having a saponification degree of about 60% to about 95%; a plasticizer; a hydrolysis stabilizer compound having a chelant group having two hydrogen atoms bonded to two respective heteroatoms selected from nitrogen, oxygen and sulfur. The two hydrogen atoms have a distance between each other of 4.2×10?10 m to 5.8×10?10 m. The stabilizer compound is present in an amount of at least 0.75 mmoles per 100 g of copolymer. The elongated element is in particular a buffer tube housing a plurality of optical fibers. The presence of the stabilizer reduces the increase of the hydrolysis degree of the copolymer upon aging, thus maintaining the desired water blocking properties of the copolymer.
    Type: Application
    Filed: December 19, 2002
    Publication date: August 11, 2005
    Inventors: Mauro Maritano, Raffaella Donetti, Antonio Campana, Massimiliano Pavan, Raimondo Scordamaglia
  • Publication number: 20050063650
    Abstract: Telecommunication cable having a tubular element, in particular a buffer tube housing at least one transmission element. The tubular element has a polymeric composition which allows an easy tearing of the element, in order to get access to the transmission element housed therein. The tubular element is made from a polymeric composition having a heterophasic olefin copolymer which has at least one amorphous phase having sequences deriving from copolymerization of at least two different olefin monomers, at least a first crystalline phase having sequences deriving from the homopolymerization of a first olefin monomer and at least a second crystalline phase having sequences deriving from the homopolymerization of a second olefin monomer.
    Type: Application
    Filed: November 28, 2001
    Publication date: March 24, 2005
    Inventors: Luca Castellani, Giovanni Brandi, Massimiliano Pavan