Patents by Inventor Massimo Drago

Massimo Drago has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11626531
    Abstract: A semiconductor body and a method for producing a semiconductor body are disclosed. In an embodiment a semiconductor body includes a p-conducting region, wherein the p-conducting region has at least one barrier zone and a contact zone, wherein the barrier zone has a first magnesium concentration and a first aluminum concentration, wherein the contact zone has a second magnesium concentration and a second aluminum concentration, wherein the first aluminum concentration is greater than the second aluminum concentration, wherein the first magnesium concentration is at least ten times less than the second magnesium concentration, wherein the contact zone forms an outwardly exposed surface of the semiconductor body, and wherein the barrier zone adjoins the contact zone, and wherein the semiconductor body is based on a nitride compound semiconductor material.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: April 11, 2023
    Assignee: OSRAM OLED GMBH
    Inventors: Massimo Drago, Alexander Frey, Joachim Hertkorn, Ingrid Koslow
  • Patent number: 11502224
    Abstract: A semiconductor body main include a III-V compound semiconductor material having a p-conductive region doped with a p-dopant. The p-conductive region may include at least one first section, one second section, and one third section. The second section may be arranged between the first and third sections. The second section may directly adjoin the first and third sections. An indium concentration of at least one of the sections differs from an indium concentration of the other two sections.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 15, 2022
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Ingrid Koslow, Massimo Drago, Joachim Hertkorn, Alexander Frey
  • Patent number: 11094845
    Abstract: A method of producing light-emitting diode chips includes A) and C)-F) in order: A) providing a growth substrate, C) producing a structural layer, the structural layer including Alx1Ga1-x1-y1Iny1N, where-in y1?0.5, and a plurality of structural elements with a mean height of at least 50 nm so that a side of the structural layer facing away from the growth substrate is rough, D) producing a cover layer on the structural layer, the cover layer forming the structural layer true to shape and including Alx2Ga1-x2-y2Iny2N, wherein x2?0.6, E) producing a planarization layer on the cover layer, a side of the finished planarization layer is flat and the planarization layer includes Alx3Ga1-x3-y3Iny3N, wherein x3+y3?0.2, and F) growing a functional layer sequence that generates radiation on the planarization layer.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: August 17, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Massimo Drago, Alexander Frey, Joachim Hertkorn
  • Publication number: 20210091267
    Abstract: A semiconductor body main include a III-V compound semiconductor material having a p-conductive region doped with a p-dopant. The p-conductive region may include at least one first section, one second section, and one third section. The second section may be arranged between the first and third sections. The second section may directly adjoin the first and third sections. An indium concentration of at least one of the sections differs from an indium concentration of the other two sections.
    Type: Application
    Filed: June 14, 2018
    Publication date: March 25, 2021
    Inventors: Ingrid KOSLOW, Massimo DRAGO, Joachim HERTKORN, Alexander FREY
  • Publication number: 20200381579
    Abstract: A semiconductor body and a method for producing a semiconductor body are disclosed. In an embodiment a semiconductor body includes a p-conducting region, wherein the p-conducting region has at least one barrier zone and a contact zone, wherein the barrier zone has a first magnesium concentration and a first aluminum concentration, wherein the contact zone has a second magnesium concentration and a second aluminum concentration, wherein the first aluminum concentration is greater than the second aluminum concentration, wherein the first magnesium concentration is at least ten times less than the second magnesium concentration, wherein the contact zone forms an outwardly exposed surface of the semiconductor body, and wherein the barrier zone adjoins the contact zone, and wherein the semiconductor body is based on a nitride compound semiconductor material.
    Type: Application
    Filed: August 24, 2018
    Publication date: December 3, 2020
    Inventors: Massimo Drago, Alexander Frey, Joachim Hertkorn, Ingrid Koslow
  • Publication number: 20200235264
    Abstract: A method of producing light-emitting diode chips includes A) and C)-F) in order: A) providing a growth substrate, C) producing a structural layer, the structural layer including Alx1Ga1-x1-y1Iny1N, where-in y1?0.5, and a plurality of structural elements with a mean height of at least 50 nm so that a side of the structural layer facing away from the growth substrate is rough, D) producing a cover layer on the structural layer, the cover layer forming the structural layer true to shape and including Alx2Ga1-x2-y2Iny2N, wherein x2?0.6, E) producing a planarization layer on the cover layer, a side of the finished planarization layer is flat and the planarization layer includes Alx3Ga1-x3-y3Iny3N, wherein x3+y3?0.2, and F) growing a functional layer sequence that generates radiation on the planarization layer.
    Type: Application
    Filed: March 15, 2018
    Publication date: July 23, 2020
    Inventors: Massimo Drago, Alexander Frey, Joachim Hertkorn
  • Patent number: 10566501
    Abstract: A method for producing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment the method includes providing a semiconductor layer sequence including a light-emitting and/or light-absorbing active zone and a top face downstream of the active zone in a stack direction extending perpendicular to a main plane of extension of the semiconductor layer sequence, applying a layer stack onto the top face, wherein the layer stack includes an oxide layer containing indium, and an intermediate face downstream of the top face in the stack direction and applying a contact layer onto the intermediate face, wherein the contact layer includes indium tin oxide, and wherein the layer stack is, within the bounds of manufacturing tolerances, free of tin.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 18, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Simeon Katz, Kai Gehrke, Massimo Drago, Joachim Hertkorn
  • Publication number: 20180190874
    Abstract: A method for producing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment the method includes providing a semiconductor layer sequence including a light-emitting and/or light-absorbing active zone and a top face downstream of the active zone in a stack direction extending perpendicular to a main plane of extension of the semiconductor layer sequence, applying a layer stack onto the top face, wherein the layer stack includes an oxide layer containing indium, and an intermediate face downstream of the top face in the stack direction and applying a contact layer onto the intermediate face, wherein the contact layer includes indium tin oxide, and wherein the layer stack is, within the bounds of manufacturing tolerances, free of tin.
    Type: Application
    Filed: June 16, 2016
    Publication date: July 5, 2018
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Simeon Katz, Kai Gehrke, Massimo Drago, Joachim Hertkorn