Patents by Inventor Massimo Maximilian L. Villinger

Massimo Maximilian L. Villinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11476378
    Abstract: A visibly transparent planar structure using a CPA scheme to boost the absorption of a multi-layer thin-film configuration, requiring no surface patterning, to overcome the intrinsic absorption limitation of the absorbing material. This is achieved in a multi-layer absorbing Fabry-Perot (FP) cavity, namely a thin-film amorphous silicon solar cell. Omni-resonance is achieved across a bandwidth of 80 nm in the near-infrared (NIR), thus increasing the effective absorption of the material, without modifying the material itself, enhancing it beyond its intrinsic absorption over a considerable spectral range. The apparatus achieved an increased external quantum efficiency (EQE) of 90% of the photocurrent generated in the 80 nm NIR region from 660 to 740 nm as compared to a bare solar cell. over the spectral range of interest.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 18, 2022
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Ayman F. Abouraddy, Massimo Maximilian L. Villinger, Abbas Shiri, Soroush Shabahang, Ali K. Jahromi, Chris H. Villinger
  • Publication number: 20210280732
    Abstract: A visibly transparent planar structure using a CPA scheme to boost the absorption of a multi-layer thin-film configuration, requiring no surface patterning, to overcome the intrinsic absorption limitation of the absorbing material. This is achieved in a multi-layer absorbing Fabry-Perot (FP) cavity, namely a thin-film amorphous silicon solar cell. Omni-resonance is achieved across a bandwidth of 80 nm in the near-infrared (NIR), thus increasing the effective absorption of the material, without modifying the material itself, enhancing it beyond its intrinsic absorption over a considerable spectral range. The apparatus achieved an increased external quantum efficiency (EQE) of 90% of the photocurrent generated in the 80 nm NIR region from 660 to 740 nm as compared to a bare solar cell. over the spectral range of interest.
    Type: Application
    Filed: May 4, 2020
    Publication date: September 9, 2021
    Inventors: Ayman F. Abouraddy, Massimo Maximilian L. Villinger, Abbas Shiri, Soroush Shabahang, Ali K. Jahromi, Chris H. Villinger
  • Patent number: 9740031
    Abstract: A thin film photonic structure that enables segregation of the effective absorption of the thin film and its intrinsic absorption while substantially eliminating bandwidth restrictions. In the form of an optical resonator, the structure includes two, multi-layer, aperiodic dielectric mirrors and a lossy, dielectric thin film and characterized by an intrinsic optical absorption over at least a one octave bandwidth. The two, multi-layer, aperiodic dielectric mirrors are characterized by a reflectivity amplitude that increases in-step with increasing wavelength over the at least one octave bandwidth. Upon a single incoherent beam of optical radiation having a spectrum over the at least one octave bandwidth incident on one side of the resonator structure, the lossy, dielectric thin film is characterized by an effective optical absorption over the at least one octave bandwidth that is greater than the intrinsic optical absorption over the at least one octave bandwidth.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: August 22, 2017
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Ayman F. Abouraddy, Lorelle N. Pye, Massimo Maximilian L. Villinger, Soroush Shabahang, Walker D. Larson, Lane Martin
  • Publication number: 20170139238
    Abstract: A thin film photonic structure that enables segregation of the effective absorption of the thin film and its intrinsic absorption while substantially eliminating bandwidth restrictions. In the form of an optical resonator, the structure includes two, multi-layer, aperiodic dielectric mirrors and a lossy, dielectric thin film and characterized by an intrinsic optical absorption over at least a one octave bandwidth. The two, multi-layer, aperiodic dielectric mirrors are characterized by a reflectivity amplitude that increases in-step with increasing wavelength over the at least one octave bandwidth. Upon a single incoherent beam of optical radiation having a spectrum over the at least one octave bandwidth incident on one side of the resonator structure, the lossy, dielectric thin film is characterized by an effective optical absorption over the at least one octave bandwidth that is greater than the intrinsic optical absorption over the at least one octave bandwidth.
    Type: Application
    Filed: March 14, 2016
    Publication date: May 18, 2017
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Ayman F. Abouraddy, Lorelle N. Pye, Massimo Maximilian L. Villinger, Soroush Shabahang, Walker D. Larson, Lane Martin