Patents by Inventor Massimo Pizzorno

Massimo Pizzorno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9279952
    Abstract: An optical cable for communication includes at least one retaining element blocked with respect to the water propagation as well as a process for manufacturing such an optical cable. The optical cable includes, in addition to the retaining element, at least two transmission elements housed within the retaining element and a water swellable yarn housed within the retaining element. The water swellable yarn is selected according to the following equation: V w V TF = k V t + R ( I ) in which Vw is the volume of the water swellable yarn after swelling upon contact with water; VTF is the total free volume in the retaining element; k is a constant?180; R is a constant?1.4; and Vt is the free volume per each transmission element. Advantageously, the optical cable is water-blocked and the water swellable yarn does not induce microbending effects on the transmission elements.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: March 8, 2016
    Assignee: PRYSMIAN CAVI E SISTEMI ENERGIA S.R.L.
    Inventors: Alessandro Ginocchio, Enrico Consonni, Paolo Arturo Presa, Massimo Pizzorno, Mauro Maritano
  • Patent number: 7995886
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 9, 2011
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Publication number: 20110089588
    Abstract: An optical cable for communication includes at least one retaining element blocked with respect to the water propagation as well as a process for manufacturing such an optical cable. The optical cable includes, in addition to the retaining element, at least two transmission elements housed within the retaining element and a water swellable yarn housed within the retaining element. The water swellable yarn is selected according to the following equation: V w V TF = k V t + R ( I ) in which Vw is the volume of the water swellable yarn after swelling upon contact with water; VTF is the total free volume in the retaining element; k is a constant?180; R is a constant?1.4; and Vt is the free volume per each transmission element. Advantageously, the optical cable is water-blocked and the water swellable yarn does not induce microbending effects on the transmission elements.
    Type: Application
    Filed: November 16, 2010
    Publication date: April 21, 2011
    Applicant: Prysmian Cavi e Sistemi Energia S.r.L.
    Inventors: Alessandro GINOCCHIO, Enrico Consonni, Paolo Arturo Presa, Massimo Pizzorno, Mauro Maritano
  • Patent number: 7860361
    Abstract: An optical cable for communication includes at least one retaining element blocked with respect to the water propagation as well as a process for manufacturing such an optical cable. The optical cable includes, in addition to the retaining element, at least two transmission elements housed within the retaining element and a water swellable yarn housed within the retaining element. The water swellable yarn is selected according to the following equation: V w V TF = k V t + R ( 1 ) in which Vw is the volume of the water swellable yarn after swelling upon contact with water; VTF is the total free volume in the retaining element; k is a constant ?180; R is a constant ?1.4; and Vt is the free volume per each transmission element. Advantageously, the optical cable is water-blocked and the water swellable yarn does not induce microbending effects on the transmission elements.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 28, 2010
    Assignee: Prysmian Cavi e Sistemi Energia S.r.L.
    Inventors: Alessandro Ginocchio, Enrico Consonni, Paolo Arturo Presa, Massimo Pizzorno, Mauro Maritano
  • Patent number: 7706640
    Abstract: A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: April 27, 2010
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Mauro Maritano
  • Publication number: 20090297106
    Abstract: A method for manufacturing an optical cable for communication includes at least one micromodule, said micromodule being blocked with respect to the propagation of water. The method includes the steps of providing at least one optical fiber; embedding the at least one optical fiber in a pseudoplastic filling compound having a viscosity of 3 Pa·s to 30 Pa·s, preferably 7 Pa·s to 25 Pa·s at a shear rate of 10 s?1 and at a temperature of 100° C., and a cross-over lower than 30 Hz, preferably 5 Hz to 25 Hz, at a temperature of 100° C.; and extruding a retaining element made of a thermoplastic polymeric composition around the at least one optical fiber so embedded in the filling compound to obtain a micromodule.
    Type: Application
    Filed: September 27, 2004
    Publication date: December 3, 2009
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Massimiliano Pavan, Davide Ceschiat
  • Patent number: 7536071
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least one micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa·s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: May 19, 2009
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Patent number: 7447406
    Abstract: An optical fiber unit having a sheath and a plurality of optical fiber elements loosely housed in the sheath. The sheath is coated with particles of an adherence reducing substance and has a radial thickness that is not substantially greater than 0.3 mm. The coating of adherence reducing particles is applied as a liquid coating. The liquid coating is a dispersion of the particles and heat is applied to evaporate the liquid content of the liquid coating to produce a dry coating of particles on the sheath.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: November 4, 2008
    Assignees: Prysmian Cables & Systems Limited, Pirelli S.p.A.
    Inventors: Ralph Sutehall, Martin Vincent Davies, Roger John Pike, Davide Ceschiat, Massimo Pizzorno
  • Publication number: 20080267569
    Abstract: An optical cable for communication includes at least one retaining element blocked with respect to the water propagation as well as a process for manufacturing such an optical cable. The optical cable includes, in addition to the retaining element, at least two transmission elements housed within the retaining element and a water swellable yarn housed within the retaining element. The water swellable yarn is selected according to the following equation: V w V TF = k V t + R ( 1 ) in which VW is the volume of the water swellable yarn after swelling upon contact with water; VTF is the total free volume in the retaining element; k is a constant ?180; R is a constant ?1.4; and Vt is the free volume per each transmission element. Advantageously, the optical cable is water-blocked and the water swellable yarn does not induce microbending effects on the transmission elements.
    Type: Application
    Filed: November 5, 2004
    Publication date: October 30, 2008
    Inventors: Alessandro Ginocchio, Enrico Consonni, paolo Arturo Presa, Massimo Pizzorno, Mauro Maritano
  • Publication number: 20080212927
    Abstract: An optical cable for communication includes at least one micromodule, wherein the micromodule is blocked with respect to the propagation of water. The at least ones micromodule includes at least one optical fiber, a retaining element for housing the at least one optical fiber, and a thixotropic filling compound arranged within the retaining element. The filling compound is thixotropic, has a viscosity higher than or equal to 700 Pa-s at zero shear rate and at a first temperature of 20° C., a loss modulus G? lower than or equal to 3000 MPa at 1 Hz and at a second temperature of ?45° C., and is compatible with the retaining element.
    Type: Application
    Filed: September 27, 2004
    Publication date: September 4, 2008
    Inventors: Massimiliano Pavan, Massimo Pizzorno, Alessandro Ginocchio, Davide Ceschiat
  • Patent number: 7373057
    Abstract: An optical fiber cable has a highly reduced diameter. The cable has a central strength member; a number of tubes containing loosely arranged optical fibers, each tube having a thickness, and each optical fiber having a coating; and a protective outer jacket, wherein the filling coefficient of optical fibers in at least one loose tube is ?45°/0. The tubes are made of a material having an elasticity modulus ?700 MPa; and the optical fibers are SM-R fibers having a microbending sensitivity ?4.0 dB·km?1/g·mm?1 at a temperature of about ?30° C. to +60° C. at about 1550 nm.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 13, 2008
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Enrico Consonni
  • Patent number: 7333697
    Abstract: A telecommunication optical fiber cable and in particular a reduced diameter optical cable with improved installation features for use in the end part of an access telecommunication network. The optical fiber cable has a number of optical fibers; at least a core tube containing the optical fibers; a jacket surrounding the core tube; and at least one strength rod spaced from the central axis, the cable having a twisting stiffness G*Jp, wherein G is the elastic shear modulus; and Jp is the polar moment of inertia of a cable section, wherein the twisting stiffness G*Jp is lower than or equal to 0.10 Nm2, preferably lower than or equal to 0.05 Nm2, and more preferably lower than or equal to 0.02 Nm2. The cable is profitably installable by a blown method.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: February 19, 2008
    Assignee: Prysmian Cavi E Sistemi Energia S.R.L.
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Giovanni Brandi
  • Publication number: 20070274647
    Abstract: An optical fiber cable has a highly reduced diameter. The cable has a central strength member; a number of tubes containing loosely arranged optical fibers, each tube having a thickness, and each optical fiber having a coating; and a protective outer jacket, wherein the filling coefficient of optical fibers in at least one loose tube is ?45°/0. The tubes are made of a material having an elasticity modulus ?700 MPa; and the optical fibers are SM-R fibers having a microbending sensitivity ?4.0 dB·km?1/g·mm?1 at a temperature of about ?30° C. to +60° C. at about 1550 nm.
    Type: Application
    Filed: September 30, 2003
    Publication date: November 29, 2007
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Enrico Consonni
  • Publication number: 20070140631
    Abstract: A telecommunication optical fiber cable and in particular a reduced diameter optical cable with improved installation features for use in the end part of an access telecommunication network. The optical fiber cable has a number of optical fibers; at least a core tube containing the optical fibers; a jacket surrounding the core tube; and at least one strength rod spaced from the central axis, the cable having a twisting stiffness G*Jp, wherein G is the elastic shear modulus; and Jp is the polar moment of inertia of a cable section, wherein the twisting stiffness G*Jp is lower than or equal to 0.10 Nm2, preferably lower than or equal to 0.05 Nm2, and more preferably lower than or equal to 0.02 Nm2. The cable is profitably installable by a blown method.
    Type: Application
    Filed: July 25, 2003
    Publication date: June 21, 2007
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Giovanni Brandi
  • Publication number: 20070081773
    Abstract: A telecommunication fiber optic cable for gas pipeline application has a built-in leakage detecting device. The cable has an optical core including a number of telecommunication optical fibers, an outer jacket covering the optical core, and one or more gas leakage detector optical fibers. One or more gas leakage detector optical fibers are enclosed within the outer jacket. Preferably, the cable has a linearly extending rod reinforcing system having strength rods that force the cable to bend in a preferential bending place. Preferably, the leakage detector optical fibers are located at, or close to, a plane that is substantially orthogonal to the preferential bending plane and passing through the cable neutral axis.
    Type: Application
    Filed: October 23, 2003
    Publication date: April 12, 2007
    Inventors: Massimo Pizzorno, Alessandro Ginocchio, Mauro Maritano
  • Publication number: 20070063363
    Abstract: An optical fibre unit having a sheath and a plurality of optical fibre elements loosely housed in the sheath. The sheath is coated with particles of an adherence reducing substance and has a radial thickness that is not substantially greater than 0.3 mm. The coating of adherence reducing particles is applied as a liquid coating. The liquid coating is a dispersion of the particles and heat is applied to evaporate the liquid content of the liquid coating to produce a dry coating of particles on the sheath.
    Type: Application
    Filed: May 26, 2006
    Publication date: March 22, 2007
    Applicants: Pirelli General PLC, Pirelli SPA
    Inventors: Ralph Sutehall, Martin Davies, Roger Pike, Davide Ceschiat, Massimo Pizzorno
  • Patent number: 7174079
    Abstract: Optical fiber ribbon having an optical fiber with a radiation curable internal coating and a radiation curable colored coating disposed to surround the internal coating, and a radiation curable matrix material surrounding one or more of the optical fibers to form a ribbon, in which: the colored coating has a degree of adhesion to the inner coating which is higher than the degree of adhesion to the matrix material; and the optical fiber in the optical fiber ribbon shows, upon aging of the ribbon for at least two weeks in water at 60° C., an increase in the attenuation of the transmitted signal at 1550 nm of less than 0.05 db/km with respect to the attenuation of the assembled optical fiber measured before aging.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 6, 2007
    Assignee: Prysmian Cavi e Sistemi Energia S.r.l.
    Inventors: Adrianus Gijsbertus Maria Abel, Albert Allan De Vries, Gouke Dirk Jan Geus, Johannes Cornelis Van Den Burg, Johannes Adrianus Van Eekelen, Alessandro Ginocchio, Massimo Pizzorno
  • Publication number: 20050169588
    Abstract: An optical fibre unit having a sheath and a plurality of optical fibre elements loosely housed in the sheath. The sheath is coated with particles of an adherence reducing substance and has a radial thickness that is not substantially greater than 0.3 mm. The coating of adherence reducing particles is applied as a liquid coating. The liquid coating is a dispersion of the particles and heat is applied to evaporate the liquid content of the liquid coating to produce a dry coating of particles on the sheath.
    Type: Application
    Filed: March 13, 2003
    Publication date: August 4, 2005
    Inventors: Ralph Sutehall, Martin Davies, Roger Pike, Davide Ceschiat, Massimo Pizzorno
  • Patent number: 6797740
    Abstract: The invention relates to a radiation curable colored coating composition for coloring a coated optical fiber wherein the coating, when disposed and cured to surround an optical fiber coated with an internal coating, and when said colored fiber is coated with a matrix material and assembled into an optical fiber ribbon, said colored coating has a degree of adhesion to the internal coating which is higher than the degree of adhesion to the matrix material and said optical fiber assembled into said optical fiber ribbon shows, upon aging for at least two weeks in water at 60° C., an increase in the attenuation of the transmitted signal at 1550 nm of less than 0.05 db/km with respect to the attenuation of the assembled optical fiber measured before aging. The invention also relates to said colored coating composition when used in an optical fiber ribbon.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: September 28, 2004
    Assignee: DSM N.V.
    Inventors: Adrianus G. M. Abel, Albert A Vries De, Gouke D. J. Geus, Johannes C Burg Van Den, Johannes A Eekelen Van, Alessandro Ginocchio, Massimo Pizzorno
  • Publication number: 20040062501
    Abstract: Optical fiber ribbon having an optical fiber with a radiation curable internal coating and a radiation curable colored coating disposed to surround the internal coating, and a radiation curable matrix material surrounding one or more of the optical fibers to form a ribbon, in which: the colored coating has a degree of adhesion to the inner coating which is higher than the degree of adhesion to the matrix material; and the optical fiber in the optical fiber ribbon shows, upon aging of the ribbon for at least two weeks in water at 60° C., an increase in the attenuation of the transmitted signal at 1550 nm of less than 0.05 db/km with respect to the attenuation of the assembled optical fiber measured before aging.
    Type: Application
    Filed: September 17, 2003
    Publication date: April 1, 2004
    Inventors: Adrianus Gijsbertus Maria Abel, Albert Allan De Vries, Gouke Dirk Jan Geus, Johannes Cornelis Van Den Burg, Johannes Adrianus Van Eekelen, Alessandro Ginocchio, Massimo Pizzorno