Patents by Inventor Masutaka Shinmen

Masutaka Shinmen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896918
    Abstract: The present disclosure provides a method for stably supplying a highly pure n-butylamine gas having a constant composition. The present disclosure is a composition supply method including: a filling step of filling a container with a composition containing n-butylamine in an amount of 99.5% by volume or more and isobutylamine in an amount of 0.001% by volume or more and 0.5% by volume or less; a warming step of warming the container filled with the composition to 50° C. or higher; and a gas supply step of supplying a gas containing n-butylamine and isobutylamine from the warmed container to a predetermined device.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: February 13, 2024
    Assignee: Central Glass Company, Limited
    Inventors: Masutaka Shinmen, Azusa Miyake, Masayoshi Imachi, Ryusei Sezaki
  • Publication number: 20230257339
    Abstract: The alkylamine composition of the present disclosure contains: an alkylamine represented by the following formula (1) in an amount of 99.
    Type: Application
    Filed: June 23, 2021
    Publication date: August 17, 2023
    Applicant: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Masutaka SHINMEN, Kenta WATANABE, Azusa MIYAKE
  • Publication number: 20220384847
    Abstract: There is provided a method for producing lithium difluorophosphate in which difluorophosphate ester reacts with a lithium salt compound in a nonaqueous organic solvent without using water as a raw material, a method for producing a difluoro phosphate ester including a step of allowing a dihalophosphate ester to react with a fluorinating agent having a concentration of contained hydrogen fluoride of 15 mol % or less in a nonaqueous organic solvent; lithium difluorophosphate in which a value of a relational expression (d90-d10)/MV represented by d90 which is a particle size at which a volume cumulative distribution is 90%, d10 which is a particle size at which a volume cumulative distribution is 10%, and MV which is a volume average particle size is 10 or less; and methods for producing a nonaqueous electrolytic solution and a nonaqueous secondary battery using the production method described above.
    Type: Application
    Filed: August 6, 2020
    Publication date: December 1, 2022
    Inventors: Mikihiro TAKAHASHI, Masutaka SHINMEN, Takayoshi MORINAKA, Masataka FUJIMOTO, Susumu IWASAKI, Keita NAKAHARA, Masahiro MIURA, Shunsuke MIMURA, Katsuya KUBO
  • Patent number: 11424486
    Abstract: Provided is an electrolyte for a non-aqueous electrolyte battery, which can provide, when used in a non-aqueous electrolyte battery, in a good balance, an effect to suppress an increase in an internal resistance at a low temperature and an effect to suppress an increase in an amount of gas generated at a high temperature, as well as a non-aqueous electrolyte battery containing such an % electrolyte. The non-aqueous electrolyte comprises a non-aqueous solvent and at least a hexafluorophosphate and/or tetrafluoroborate as a solute, and further comprises at least one imide anion-containing salt represented by the following general formula [1] but does not contain a silane compound represented by the following general formula [2] or an ionic complex represented by, for example, the following general formula [3].
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: August 23, 2022
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi Morinaka, Makoto Kubo, Wataru Kawabata, Masutaka Shinmen, Hiroki Matsuzaki, Mikihiro Takahashi
  • Publication number: 20220081575
    Abstract: The selective film deposition method according to an embodiment of the present disclosure includes depositing a film of an organic matter represented by the following formula (1) on a substrate having a structure where a first surface region containing at least one of a metal or a metal oxide and a second surface region containing a nonmetallic inorganic material are both exposed, selectively in the first surface region than in the second surface region, wherein N represents a nitrogen atom; and R1 represents a C1-C30 hydrocarbon group optionally containing a hetero atom or a halogen atom, R2, R3, R4, and R5 each independently represent a hydrogen atom or a C1-C10 hydrocarbon group optionally containing a hetero atom or a halogen atom, where the hydrocarbon group covers a branched or cyclic hydrocarbon group when containing 3 or more carbon atoms.
    Type: Application
    Filed: January 7, 2020
    Publication date: March 17, 2022
    Applicant: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Masutaka SHINMEN, Takuya OKADA, Junki YAMAMOTO, Ryo NADANO, Tatsuo MIYAZAKI
  • Patent number: 11230564
    Abstract: To provide a method for producing a phosphoryl imide salt represented by the following general formula (1) at a satisfactory yield by cation exchange. The method comprises the step of performing cation exchange by bringing a phosphoryl imide salt represented by the following general formula (2) into contact with a cation exchange resin having M1 n+ or a metal salt represented by the general formula (4) in an organic solvent having a water content of 0.3% by mass or less.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: January 25, 2022
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Ryosuke Terada
  • Patent number: 11171361
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: November 9, 2021
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Makoto Kubo, Takayoshi Morinaka, Mikihiro Takahashi, Masutaka Shinmen, Wataru Kawabata, Hiroki Matsuzaki
  • Publication number: 20210331085
    Abstract: The present disclosure provides a method for stably supplying a highly pure n-butylamine gas having a constant composition. The present disclosure is a composition supply method including: a filling step of filling a container with a composition containing n-butylamine in an amount of 99.5% by volume or more and isobutylamine in an amount of 0.001% by volume or more and 0.5% by volume or less; a warming step of warming the container filled with the composition to 50° C. or higher; and a gas supply step of supplying a gas containing n-butylamine and isobutylamine from the warmed container to a predetermined device.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 28, 2021
    Inventors: Masutaka SHINMEN, Azusa MIYAKE, Masayoshi IMACHI, Ryusei SEZAKI
  • Patent number: 11145904
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises anon-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 12, 2021
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Makoto Kubo, Takayoshi Morinaka, Mikihiro Takahashi, Masutaka Shinmen, Wataru Kawabata, Hiroki Matsuzaki
  • Publication number: 20210054005
    Abstract: To provide a method for producing a phosphoryl imide salt represented by the following general formula (1) at a satisfactory yield by cation exchange. The method comprises the step of performing cation exchange by bringing a phosphoryl imide salt represented by the following general formula (2) into contact with a cation exchange resin having M1 n+ or a metal salt represented by the general formula (4) in an organic solvent having a water content of 0.3% by mass or less.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 25, 2021
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Ryosuke TERADA
  • Publication number: 20210028493
    Abstract: Provided is an electrolyte for a non-aqueous electrolyte battery, which can provide, when used in a non-aqueous electrolyte battery, in a good balance, an effect to suppress an increase in an internal resistance at a low temperature and an effect to suppress an increase in an amount of gas generated at a high temperature, as well as a non-aqueous electrolyte battery containing such an % electrolyte. The non-aqueous electrolyte comprises a non-aqueous solvent and at least a hexafluorophosphate and/or tetrafluoroborate as a solute, and further comprises at least one imide anion-containing salt represented by the following general formula [1] but does not contain a silane compound represented by the following general formula [2] or an ionic complex represented by, for example, the following general formula [3].
    Type: Application
    Filed: October 7, 2020
    Publication date: January 28, 2021
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi MORINAKA, Makoto KUBO, Wataru KAWABATA, Masutaka SHINMEN, Hiroki MATSUZAKI, Mikihiro TAKAHASHI
  • Patent number: 10851124
    Abstract: To provide a method for producing a phosphoryl imide salt represented by the following general formula (1) at a satisfactory yield by cation exchange. The method comprises the step of performing cation exchange by bringing a phosphoryl imide salt represented by the following general formula (2) into contact with a cation exchange resin having M1 n+ or a metal salt represented by the general formula (4) in an organic solvent having a water content of 0.3% by mass or less.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: December 1, 2020
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Ryosuke Terada
  • Patent number: 10840554
    Abstract: Provided is an electrolyte for a non-aqueous electrolyte battery, which can provide, when used in a non-aqueous electrolyte battery, in a good balance, an effect to suppress an increase in an internal resistance at a low temperature and an effect to suppress an increase in an amount of gas generated at a high temperature, as well as a non-aqueous electrolyte battery containing such an electrolyte. The non-aqueous electrolyte comprises a non-aqueous solvent and at least a hexafluorophosphate and/or tetrafluoroborate as a solute, and further comprises at least one imide anion-containing salt represented by the following general formula [1] but does not contain a silane compound represented by the following general formula [2] or an ionic complex represented by, for example, the following general formula [3].
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: November 17, 2020
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Takayoshi Morinaka, Makoto Kubo, Wataru Kawabata, Masutaka Shinmen, Hiroki Matsuzaki, Mikihiro Takahashi
  • Publication number: 20200335823
    Abstract: An electrolyte solution for a nonaqueous electrolyte battery according to the present invention includes the following components: (I) a nonaqueous organic solvent; (II) an ionic salt as a solute; (III) at least one kind of additive selected from the group consisting of compounds represented by the general formula (1); and (IV) an additive having a specific structure. Si(R1)a(R2)4-a??(1) The combined use of the components (III) and (IV) provides the effects of reducing the elution of Ni from the Ni-rich positive electrode into the electrolyte solution, without impairing the capacity retention rate of the battery after cycles, and improving the high-temperature storage stability of the electrolyte solution.
    Type: Application
    Filed: December 10, 2018
    Publication date: October 22, 2020
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Wataru KAWABATA, Makoto KUBO, Katsumasa MORI, Ryota ESAKI, Takahiro TANIGAWA
  • Publication number: 20200136186
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises anon-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 30, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Makoto KUBO, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Masutaka SHINMEN, Wataru KAWABATA, Hiroki MATSUZAKI
  • Publication number: 20200115401
    Abstract: To provide a method for producing a phosphoryl imide salt represented by the following general formula (1) at a satisfactory yield by cation exchange. The method comprises the step of performing cation exchange by bringing a phosphoryl imide salt represented by the following general formula (2) into contact with a cation exchange resin having M1 n+ or a metal salt represented by the general formula (4) in an organic solvent having a water content of 0.3% by mass or less.
    Type: Application
    Filed: April 9, 2018
    Publication date: April 16, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Mikihiro TAKAHASHI, Takayoshi MORINAKA, Masutaka SHINMEN, Ryosuke TERADA
  • Publication number: 20200119400
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 16, 2020
    Applicant: CENTRAL GLASS CO., LTD.
    Inventors: Makoto KUBO, Takayoshi MORINAKA, Mikihiro TAKAHASHI, Masutaka SHINMEN, Wataru KAWABATA, Hiroki MATSUZAKI
  • Patent number: 10553904
    Abstract: The present invention provides an electrolyte solution for a non-aqueous electrolyte battery capable of an exerting high average discharge voltage and an excellent low-temperature output characteristic at ?30° C. or lower and an excellent cycle characteristic and an excellent storage characteristic at high temperatures of 50° C. or higher, as well as a non-aqueous electrolyte battery containing the same. The present electrolyte solution comprises a non-aqueous solvent, a solute, at least one silane compound represented by the following general formula (1) as a first compound, and a fluorine-containing compound represented by the following general formula (3), for example, as a second compound.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 4, 2020
    Assignee: CENTRAL GLASS CO., LTD.
    Inventors: Makoto Kubo, Takayoshi Morinaka, Mikihiro Takahashi, Masutaka Shinmen, Wataru Kawabata, Hiroki Matsuzaki
  • Patent number: 10454139
    Abstract: An object of the present invention is to provide an electrolytic solution for nonaqueous electrolytic solution batteries capable of showing high output characteristics at low temperature even after the batteries are used to some extent, and a nonaqueous electrolytic solution batteries. The present invention is characterized in the use of an electrolytic solution for nonaqueous electrolytic solution batteries, the electrolytic solution including a difluoro ionic complex (1-Cis) in a cis configuration represented by the general formula (1-Cis), a nonaqueous organic solvent, and a solute. Furthermore, the electrolytic solution may contain a difluoro ionic complex (1-Trans) in a trans configuration or a tetrafluoro ionic complex (5).
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: October 22, 2019
    Assignee: Central Glass Co., Ltd.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Wataru Kawabata, Makoto Kubo, Hiroki Matsuzaki, Shoichi Tsujioka, Kenta Yamamoto
  • Patent number: 10424794
    Abstract: To provide a material suitable for a nonaqueous electrolyte battery having high-temperature durability. An ionic complex of the present invention is represented by any of the following formulae (1) to (3). For example, in the formula (1), A is a metal ion, a proton, or an onium ion; M is any of groups 13 to 15 elements. R1 represents a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom, or —N(R2)—. R2 at this time represents hydrogen atom, alkali metal atom, a C1 to C10 hydrocarbon group which may have a ring, a heteroatom, or a halogen atom. R2 can also have a branched chain or a ring structure when the number of carbon atoms is 3 or more. Y is carbon atom or sulfur atom. a, o, n, p, q, and r are each predetermined integers.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 24, 2019
    Assignee: Central Glass Co., Ltd.
    Inventors: Mikihiro Takahashi, Takayoshi Morinaka, Masutaka Shinmen, Kenta Yamamoto, Wataru Kawabata, Makoto Kubo, Masataka Fujimoto, Hiroki Matsuzaki, Shoichi Tsujioka