Patents by Inventor Matchyaraju Alla

Matchyaraju Alla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072697
    Abstract: The present disclosure pertains to devices, systems, and methods for monitoring a generator. In one embodiment, the system may include a measurement subsystem to receive a plurality of split-phase measurements of branch currents associated with the at least one generator. A split-phase transverse differential monitoring subsystem may receive the plurality of split-phase measurements of branch currents associated with the at least one generator and may generate an offset value representing a standing split-phase current. A protective action subsystem may generate a first protective action based on the phasor operating current.
    Type: Application
    Filed: August 30, 2022
    Publication date: February 29, 2024
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Matchyaraju Alla, Normann Fischer, Dale S. Finney
  • Publication number: 20230333153
    Abstract: Disclosed herein are systems for determining a broken conductor condition in a multiple-phase electric power delivery system. It has been observed that broken conductors pose a safety concern when occurring in the presence of people or vulnerable environmental conditions. Broken conductor conditions disclosed herein may be used to detect and trip the phase with the broken conductor, thus reducing or even eliminating the safety risk. Broken conductors may be determined using detected phase series arcing differences in one phase without commensurate differences in other phases. In various embodiments the phase series arcing attributes may be phase current monitored for decrement and/or phase resistance monitored for increase.
    Type: Application
    Filed: April 17, 2023
    Publication date: October 19, 2023
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Kanchanrao Gangadhar Dase, James Burton Colwell, Matchyaraju Alla, Shreenivas Pai
  • Patent number: 11631972
    Abstract: The present disclosure relates to systems and methods for protecting against and mitigating the effects of over-excitation of elements in electric power systems. In one embodiment, a system consistent with the present disclosure may comprise a point pair subsystem to receive a plurality of point pairs that define an over-excitation curve for a piece of monitored equipment. The system may receive a plurality of measurements corresponding to electrical conditions associated with the piece of monitored equipment. A logarithmic interpolation subsystem may determine a logarithmic interpolation corresponding to one of the plurality of measurements based on the plurality of point pairs. An over-excitation detection subsystem may detect an over-excitation condition based on the logarithmic interpolation, and a protective action subsystem may implement a protective action based on the over-excitation condition.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 18, 2023
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Dale S. Finney, Normann Fischer, Matchyaraju Alla
  • Patent number: 11411390
    Abstract: Detection of, and protection against faults within a restricted earth fault (REF) zone of a transformer or a generator is disclosed herein. Security of the REF protection element uses comparison of a negative-sequence reference quantity. The REF condition is only detected when there is sufficient ground involvement and a fault in the reverse detection has not been detected. Dependability of the REF protection element in low-impedance grounded systems is improved by ensuring that the element operates when a zero-sequence reference quantity and a neutral operate quantity are orthogonal to each other. The REF protection element further determines an open CT condition and blocks detection of an REF fault upon determination of the open CT condition. A tripping subsystem may issue a trip command based upon detection of the REF condition.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: August 9, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Matchyaraju Alla, Satish Samineni, Normann Fischer, Dale S. Finney
  • Publication number: 20220209525
    Abstract: Detection of, and protection against faults within a restricted earth fault (REF) zone of a transformer or a generator is disclosed herein. Security of the REF protection element uses comparison of a negative-sequence reference quantity. The REF condition is only detected when there is sufficient ground involvement and a fault in the reverse detection has not been detected. Dependability of the REF protection element in low-impedance grounded systems is improved by ensuring that the element operates when a zero-sequence reference quantity and a neutral operate quantity are orthogonal to each other. The REF protection element further determines an open CT condition and blocks detection of an REF fault upon determination of the open CT condition. A tripping subsystem may issue a trip command based upon detection of the REF condition.
    Type: Application
    Filed: December 31, 2020
    Publication date: June 30, 2022
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Matchyaraju Alla, Satish Samineni, Normann Fischer, Dale S. Finney
  • Patent number: 11368113
    Abstract: A generator system includes a generator including terminals, a generator circuit breaker coupled to the terminals and that couples and decouples the generator from a power grid, multiple sensors, and a controller that operates the generator system. The controller determines whether an active power is less than a reverse active power threshold and whether one or more turbine valves are closed, and determines that a breaker failure has occurred based on the active power being less than the reverse active power threshold and the one or more turbine valves being closed. If the active power remains less than the reverse active power and the turbine valves remain closed after a threshold time period after the trip command, and if a reactive power is less than a reverse reactive power threshold, then a breaker failure has occurred. In response, the controller may transmit another trip command to the generator circuit breaker to initiate the breaker failure protection.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: June 21, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventor: Matchyaraju Alla
  • Publication number: 20220190581
    Abstract: The present disclosure relates to systems and methods for protecting against and mitigating the effects of over-excitation of elements in electric power systems. In one embodiment, a system consistent with the present disclosure may comprise a point pair subsystem to receive a plurality of point pairs that define an over-excitation curve for a piece of monitored equipment. The system may receive a plurality of measurements corresponding to electrical conditions associated with the piece of monitored equipment. A logarithmic interpolation subsystem may determine a logarithmic interpolation corresponding to one of the plurality of measurements based on the plurality of point pairs. An over-excitation detection subsystem may detect an over-excitation condition based on the logarithmic interpolation, and a protective action subsystem may implement a protective action based on the over-excitation condition.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 16, 2022
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Dale S. Finney, Normann Fischer, Matchyaraju Alla
  • Patent number: 11316455
    Abstract: Detection and protection against electric power generator rotor turn-to-turn faults, rotor multi-point-to-ground faults, and rotor permanent magnet faults is provided herein. A fractional harmonic signal is used to determine the rotor fault condition. The fractional harmonic signal may be a fractional harmonic magnitude of the circulating current of one phase. The fractional harmonic may be a fractional harmonic magnitude of a neutral voltage. A tripping subsystem may issue a trip command based upon detection of a rotor turn-to-turn fault condition.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: April 26, 2022
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Matchyaraju Alla, Ritwik Chowdhury, Normann Fischer, Dale S. Finney, Rogerio Scharlach
  • Patent number: 11196369
    Abstract: Protection devices prevent damage to synchronous generators during loss-of-field events. In various embodiments, a first protective element is associated with a first protection zone to protect a generator from a loss-of-field event at full load. A second protective element is associated with a second protection zone to prevent thermal overload during underexcited operation of the generator and to protect from loss-of-filed at light load. A third protective element associated with a third protection zone limits operation of the generator within the generator's specific steady-state stability limits. A fourth protective element is associated with a fourth protection zone to provide an alarm prior to operation of the second protective element.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: December 7, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Matchyaraju Alla, Armando Guzman-Casillas, Dale S. Finney, Normann Fischer
  • Patent number: 11177645
    Abstract: A transformer system including a transformer including a set of wye windings, a three-phase current transformer, a neutral-current transformer, and a controller. The three-phase current transformer outputs a first signal indicative of a three-phase current conducting through the set of wye windings and the three-phase current transformer. The neutral-current transformer couples the current flowing from the ground to the neutral node of the transformer, and outputs a second signal indicative of a neutral current conducting from the ground node to the neutral node of the transformer. The controller receives the first signal and the second signal, determines whether an external ground fault condition or an internal ground fault condition is present based on the three-phase current and the neutral current, and determines whether a wiring error is present for the three-phase current transformer or the neutral-current transformer based on the three-phase current and the neutral current.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: November 16, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Matchyaraju Alla, Vinod K. Yedidi, Jakov Vico, Wasif Ahmad
  • Publication number: 20210184607
    Abstract: A generator system includes a generator including terminals, a generator circuit breaker coupled to the terminals and that couples and decouples the generator from a power grid, multiple sensors, and a controller that operates the generator system. The controller determines whether an active power is less than a reverse active power threshold and whether one or more turbine valves are closed, and determines that a breaker failure has occurred based on the active power being less than the reverse active power threshold and the one or more turbine valves being closed. If the active power remains less than the reverse active power and the turbine valves remain closed after a threshold time period after the trip command, and if a reactive power is less than a reverse reactive power threshold, then a breaker failure has occurred. In response, the controller may transmit another trip command to the generator circuit breaker to initiate the breaker failure protection.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 17, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventor: Matchyaraju Alla
  • Publication number: 20210159691
    Abstract: A transformer system including a transformer including a set of wye windings, a three-phase current transformer, a neutral-current transformer, and a controller. The three-phase current transformer outputs a first signal indicative of a three-phase current conducting through the set of wye windings and the three-phase current transformer. The neutral-current transformer couples the current flowing from the ground to the neutral node of the transformer, and outputs a second signal indicative of a neutral current conducting from the ground node to the neutral node of the transformer. The controller receives the first signal and the second signal, determines whether an external ground fault condition or an internal ground fault condition is present based on the three-phase current and the neutral current, and determines whether a wiring error is present for the three-phase current transformer or the neutral-current transformer based on the three-phase current and the neutral current.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Ritwik Chowdhury, Matchyaraju Alla, Vinod K. Yedidi, Jakov Vico, Wasif Ahmad
  • Publication number: 20210067072
    Abstract: Detection and protection against electric power generator rotor turn-to-turn faults, rotor multi-point-to-ground faults, and rotor permanent magnet faults is provided herein. A fractional harmonic signal is used to determine the rotor fault condition. The fractional harmonic signal may be a fractional harmonic magnitude of the circulating current of one phase. The fractional harmonic may be a fractional harmonic magnitude of a neutral voltage. A tripping subsystem may issue a trip command based upon detection of a rotor turn-to-turn fault condition.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Matchyaraju Alla, Ritwik Chowdhury, Normann Fischer, Dale S. Finney, Rogerio Scharlach
  • Publication number: 20200076338
    Abstract: Protection devices prevent damage to synchronous generators during loss-of-field events. In various embodiments, a first protective element is associated with a first protection zone to protect a generator from a loss-of-field event at full load. A second protective element is associated with a second protection zone to prevent thermal overload during underexcited operation of the generator and to protect from loss-of-filed at light load. A third protective element associated with a third protection zone limits operation of the generator within the generator's specific steady-state stability limits. A fourth protective element is associated with a fourth protection zone to provide an alarm prior to operation of the second protective element.
    Type: Application
    Filed: May 29, 2019
    Publication date: March 5, 2020
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Matchyaraju Alla, Armando Guzman-Casillas, Dale S. Finney, Normann Fischer