Patents by Inventor Mathew Hannon

Mathew Hannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11819949
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 21, 2023
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 11820119
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 21, 2023
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Patent number: 11565350
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: January 31, 2023
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Publication number: 20210300011
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 30, 2021
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Patent number: 10974494
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 13, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Publication number: 20210094127
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Application
    Filed: October 19, 2020
    Publication date: April 1, 2021
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 10807199
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 20, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Publication number: 20190314934
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Application
    Filed: May 24, 2019
    Publication date: October 17, 2019
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 10343237
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 9, 2019
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Publication number: 20180001425
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Application
    Filed: September 19, 2017
    Publication date: January 4, 2018
    Inventors: Jeffrey P. SERCEL, Marco MENDES, Rouzbeh SARRAFI, Joshua SCHOENLY, Xiangyang SONG, Mathew HANNON, Miroslaw SOKOL
  • Publication number: 20170266946
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Cristian PORNEALA, Mathew HANNON, Marco MENDES, Jeffrey P. SERCEL
  • Patent number: 9764427
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 19, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 9669613
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 6, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Publication number: 20160059354
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: Jeffrey P. SERCEL, Marco MENDES, Rouzbeh SARRAFI, Joshua SCHOENLY, Xiangyang SONG, Mathew HANNON, Miroslaw SOKOL
  • Publication number: 20160059349
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: Jeffrey P. SERCEL, Marco MENDES, Rouzbeh SARRAFI, Joshua SCHOENLY, Xiangyang SONG, Mathew HANNON, Miroslaw SOKOL
  • Publication number: 20140102643
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: IPG Microsystems LLC
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Publication number: 20120234807
    Abstract: Systems and methods for laser scribing provide extended depth affectation into a substrate or workpiece by focusing a laser beam such that the beam passes into the workpiece using a waveguide, self-focusing effect to cause internal crystal damage along a channel extending into the workpiece. Different optical effects may be used to facilitate the waveguide, self-focusing effect, such as multi-photon absorption in the material of the workpiece, transparency of the material of the workpiece, and aberrations of the focused laser. The laser beam may have a wavelength, pulse duration, and pulse energy, for example, to provide transmission through the material and multi-photon absorption in the material. An aberrated, focused laser beam may also be used to provide a longitudinal spherical aberration range sufficient to extend the effective depth of field (DOF) into the workpiece.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 20, 2012
    Applicant: J.P. SERCEL ASSOCIATES INC.
    Inventors: Jeffrey P. Sercel, Marco Mendes, Mathew Hannon, Michael von Dadelszen
  • Publication number: 20050230260
    Abstract: The present invention comprises a metal plating apparatus and method, particularly suitable for autocatalytic (i.e., electroless) plating, comprising a pressurized sealable vessel for disposing a substrate to be plated and for the circulation of plating solutions wherein temperatures and pressure are highly controllable.
    Type: Application
    Filed: February 4, 2005
    Publication date: October 20, 2005
    Applicant: Surfect Technologies, Inc.
    Inventors: Martin Bleck, Robert Berner, Gerard Minogue, Fernando Sanchez, Mathew Hannon, Thomas Griego