Patents by Inventor Mathias KOLLE

Mathias KOLLE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118472
    Abstract: The present disclosure describes photonic materials that reversibly change color in response to the material being stretched or otherwise mechanically deformed.
    Type: Application
    Filed: December 19, 2023
    Publication date: April 11, 2024
    Applicant: Massachusetts Institute of Technology
    Inventors: Mathias Kolle, Benjamin Miller
  • Patent number: 11953439
    Abstract: The present invention generally relates to the generation of tunable coloration and/or interference from, for example, surfaces, emulsion droplets and particles. Embodiments described herein may be useful for generation of tunable electromagnetic radiation such as coloration (e.g., iridescence, structural color) and/or interference patterns from, for example, surfaces (e.g., comprising a plurality of microdomes and/or microwells), emulsion droplets and/or particles. In some embodiments, the surfaces, interfaces, droplets, and/or particles produce visible color (e.g., structural color) without the need for dyes.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 9, 2024
    Assignees: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: Lauren Dell Zarzar, Sara N. Nagelberg, Mathias Kolle, Amy Goodling
  • Patent number: 11892668
    Abstract: The present disclosure describes photonic materials that reversibly change color in response to the material being stretched or otherwise mechanically deformed.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: February 6, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Mathias Kolle, Benjamin Miller
  • Patent number: 11654404
    Abstract: Embodiments described herein may be useful for optofluidic devices. For example, optofluidic devices using dynamic fluid lens materials represent an ideal platform to create versatile, reconfigurable, refractive optical components. For example, the articles described herein may be useful as fluidic tunable compound micro-lenses. Such compound micro-lenses may be composed of two or more components (e.g., two or more inner phases) that form stable bi-phase emulsion droplets in outer phases (e.g., aqueous media). In some embodiments, the articles described herein may be useful as light emitting droplets. Advantageously, the plurality of droplets may be configured such that light rays may modified (e.g., via stimulation of the droplets, exposure to an analyte such as a pathogen) to have a detectable emission intensity and/or angle of maximum emission intensity under a particular set of conditions.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 23, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Sara N. Nagelberg, Mathias Kolle, Lukas Zeininger, Kent Harvey, Myles Herbert
  • Publication number: 20220155506
    Abstract: The present disclosure describes photonic materials that reversibly change color in response to the material being stretched or otherwise mechanically deformed.
    Type: Application
    Filed: September 13, 2021
    Publication date: May 19, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Mathias Kolle, Benjamin Miller
  • Patent number: 11325114
    Abstract: Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 10, 2022
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna Aizenberg, Tanya Shirman, Nicolas Vogel, Mathias Kolle, Michael Aizenberg
  • Publication number: 20220002554
    Abstract: A pigment comprising a plurality of photonic crystal particles dispersed in a medium, each photonic crystal particles containing a plurality of spectrally selective absorbing components dispersed within each photonic crystal particle that selectively absorb electromagnetic radiation without substantially absorbing electromagnetic radiation near a resonant wavelength of each photonic crystal particle, wherein each photonic crystal particle has a predetermined minimum number of repeat units of a photonic crystal structure, wherein the predetermined minimum number of repeat units is related to the resonant wavelength, the full-width at half maximum of the resonant wavelength, and the refractive index contrast in the photonic crystal.
    Type: Application
    Filed: September 16, 2021
    Publication date: January 6, 2022
    Inventors: Joanna AIZENBERG, Nicolas VOGEL, Ian BURGESS, Mathias KOLLE, Tanya SHIRMAN, Stefanie UTECH, Katherine Reece PHILLIPS, David A. WEITZ, Natalie KOAY
  • Patent number: 11155715
    Abstract: A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
    Type: Grant
    Filed: July 13, 2014
    Date of Patent: October 26, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Nicolas Vogel, Ian Burgess, Mathias Kolle, Tanya Shirman, Stefanie Utech, Katherine Phillips, David A. Weitz, Natalie Koay
  • Publication number: 20210302710
    Abstract: Articles and systems for dark microscopy and related methods are generally described.
    Type: Application
    Filed: December 23, 2020
    Publication date: September 30, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Mathias Kolle, Cecile Chazot
  • Publication number: 20200056996
    Abstract: The present invention generally relates to the generation of tunable coloration and/or interference from, for example, surfaces, emulsion droplets and particles. Embodiments described herein may be useful for generation of tunable electromagnetic radiation such as coloration (e.g., iridescence, structural color) and/or interference patterns from, for example, surfaces (e.g., comprising a plurality of microdomes and/or microwells), emulsion droplets and/or particles. In some embodiments, the surfaces, interfaces, droplets, and/or particles produce visible color (e.g., structural color) without the need for dyes.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Applicants: Massachusetts Institute of Technology, The Penn State Research Foundation
    Inventors: Lauren Dell Zarzar, Sara N. Nagelberg, Mathias Kolle, Amy Goodling
  • Publication number: 20200023346
    Abstract: Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
    Type: Application
    Filed: April 22, 2019
    Publication date: January 23, 2020
    Inventors: Joanna AIZENBERG, Tanya SHIRMAN, Nicolas VOGEL, Mathias KOLLE, Michael AIZENBERG
  • Publication number: 20190388849
    Abstract: Embodiments described herein may be useful for optofluidic devices. For example, optofluidic devices using dynamic fluid lens materials represent an ideal platform to create versatile, reconfigurable, refractive optical components. For example, the articles described herein may be useful as fluidic tunable compound micro-lenses. Such compound micro-lenses may be composed of two or more components (e.g., two or more inner phases) that form stable bi-phase emulsion droplets in outer phases (e.g., aqueous media). In some embodiments, the articles described herein may be useful as light emitting droplets. Advantageously, the plurality of droplets may be configured such that light rays may modified (e.g., via stimulation of the droplets, exposure to an analyte such as a pathogen) to have a detectable emission intensity and/or angle of maximum emission intensity under a particular set of conditions.
    Type: Application
    Filed: May 17, 2019
    Publication date: December 26, 2019
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Sara N. Nagelberg, Mathias Kolle, Lukas Zeininger, Kent Harvey, Myles Herbert
  • Patent number: 10422947
    Abstract: The rolled photonic fibers presents two codependent, technologically exploitable features for light and color manipulation: regularity on the nanoscale that is superposed with microscale cylindrical symmetry, resulting in wavelength selective scattering of light in a wide range of directions. The bio-inspired photonic fibers combine the spectral filtering capabilities and color brilliance of a planar Bragg stack compounded with a large angular scattering range introduced by the microscale curvature, which also decreases the strong directional chromaticity variation usually associated with flat multilayer reflectors. Transparent and elastic synthetic materials equip the multilayer interference fibers with high reflectance that is dynamically tuned by longitudinal mechanical strain. A two-fold elongation of the elastic fibers results in a shift of reflection peak center wavelength of over 200 nm.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: September 24, 2019
    Assignees: President and Fellows of Harvard College, University of Exeter
    Inventors: Joanna Aizenberg, Mathias Kolle, Peter Vukusic, Robert D. Howe
  • Publication number: 20190227224
    Abstract: The rolled photonic fibers presents two codependent, technologically exploitable features for light and color manipulation: regularity on the nanoscale that is superposed with microscale cylindrical symmetry, resulting in wavelength selective scattering of light in a wide range of directions. The bio-inspired photonic fibers combine the spectral filtering capabilities and color brilliance of a planar Bragg stack compounded with a large angular scattering range introduced by the microscale curvature, which also decreases the strong directional chromaticity variation usually associated with flat multilayer reflectors. Transparent and elastic synthetic materials equip the multilayer interference fibers with high reflectance that is dynamically tuned by longitudinal mechanical strain. A two-fold elongation of the elastic fibers results in a shift of reflection peak center wavelength of over 200 nm.
    Type: Application
    Filed: October 19, 2018
    Publication date: July 25, 2019
    Applicants: President and Fellows of Harvard College, University of Exeter
    Inventors: Joanna AIZENBERG, Mathias KOLLE, Peter VUKUSIC, Robert D. HOWE
  • Patent number: 10265694
    Abstract: Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 23, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Joanna Aizenberg, Tanya Shirman, Nicolas Vogel, Mathias Kolle, Michael Aizenberg
  • Patent number: 10146007
    Abstract: The rolled photonic fibers presents two codependent, technologically exploitable features for light and color manipulation: regularity on the nanoscale that is superposed with microscale cylindrical symmetry, resulting in wavelength selective scattering of light in a wide range of directions. The bio-inspired photonic fibers combine the spectral filtering capabilities and color brilliance of a planar Bragg stack compounded with a large angular scattering range introduced by the microscale curvature, which also decreases the strong directional chromaticity variation usually associated with flat multilayer reflectors. Transparent and elastic synthetic materials equip the multilayer interference fibers with high reflectance that is dynamically tuned by longitudinal mechanical strain. A two-fold elongation of the elastic fibers results in a shift of reflection peak center wavelength of over 200 nm.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: December 4, 2018
    Assignees: President and Fellows of Harvard College, University of Exeter
    Inventors: Joanna Aizenberg, Mathias Kolle, Peter Vukusic, Robert D. Howe
  • Publication number: 20180246314
    Abstract: Embodiments described herein may be useful for optofluidic devices. For example, optofluidic devices using dynamic fluid lens materials represent an ideal platform to create versatile, reconfigurable, refractive optical components. For example, the articles described herein may be useful as fluidic tunable compound micro-lenses. Such compound micro-lenses may be composed of two or more components (e.g., two or more inner phases) that form stable bi-phase emulsion droplets in outer phases (e.g., aqueous media). Advantageously, the refractive index contrast at each material interface and/or the curvature of each interface may contribute to the focusing power of a refractive optical element, allowing for a wide tuning range of the emulsion lenses' focal length, and thereby enabling switching between converging or diverging lens geometries.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 30, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Lauren Dell Zarzar, Sara N. Nagelberg, Mathias Kolle
  • Publication number: 20160168386
    Abstract: A structurally colored pigment is described that contains a plurality of photonic crystal particles dispersed in a medium, where each photonic crystal particles contains a plurality of spectrally selective absorbing components dispersed within the photonic crystal particle. In certain embodiments, each photonic crystal particle has a predetermined minimum number of repeat units of the photonic crystal structure. The structurally colored material provides improved reflectance, long-term stability, and control of the desired optical effects. The fabrication techniques described herein also provide high throughput and high yield allowing use in wide ranging applications from cosmetics, paints, signs, sensors, to packaging material.
    Type: Application
    Filed: July 13, 2014
    Publication date: June 16, 2016
    Applicant: President and Fellows of Harvard College
    Inventors: Joanna AIZENBERG, Nicolas VOGEL, Ian BURGESS, Mathias KOLLE, Tanya SHIRMAN, Stefanie UTECH, Katherine PHILLIPS, David A. WEITZ, Natalie KOAY
  • Publication number: 20160144350
    Abstract: Methods for forming an interconnected network of solid material and pores, with metal residing only at the air/solid interface of the interconnected network structure are described. In certain embodiments, nanoparticle decorated sacrificial particles can be used as sacrificial templates for the formation of a porous structure having an interconnected network of solid material and interconnected network of pores. The nanoparticles reside predominantly at the air/solid interface and allow further growth and accessibility of the nanoparticles at defined positions of the interconnected structure. SEM and TEM measurements reveal the formation of 3D interconnected porous structures with nanoparticles residing predominantly at the air/solid interface of the interconnected structure.
    Type: Application
    Filed: June 30, 2014
    Publication date: May 26, 2016
    Inventors: Joanna AIZENBERG, Tanya SHIRMAN, Nicolas VOGEL, Mathias KOLLE, Michael ALZENBERG
  • Publication number: 20150362669
    Abstract: The rolled photonic fibers presents two codependent, technologically exploitable features for light and color manipulation: regularity on the nanoscale that is superposed with microscale cylindrical symmetry, resulting in wavelength selective scattering of light in a wide range of directions. The bio-inspired photonic fibers combine the spectral filtering capabilities and color brilliance of a planar Bragg stack compounded with a large angular scattering range introduced by the microscale curvature, which also decreases the strong directional chromaticity variation usually associated with flat multilayer reflectors. Transparent and elastic synthetic materials equip the multilayer interference fibers with high reflectance that is dynamically tuned by longitudinal mechanical strain. A two-fold elongation of the elastic fibers results in a shift of reflection peak center wavelength of over 200 nm.
    Type: Application
    Filed: January 23, 2014
    Publication date: December 17, 2015
    Inventors: Joanna AIZENBERG, Mathias KOLLE, Peter VUKUSIC, Robert D. HOWE