Patents by Inventor Mathieu BOISVERT

Mathieu BOISVERT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11685982
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: June 27, 2023
    Assignees: Tenneco Inc., Le Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, Jr.
  • Publication number: 20230037455
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: September 30, 2022
    Publication date: February 9, 2023
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Publication number: 20200216935
    Abstract: A powder metal material and sintered component formed of the powder metal material is provided. The powder metal material comprises a plurality of particles including copper in an amount of 10 wt. % to 50 wt. %, based on the total weight of the particles. The particles also include at least one of iron, nickel, an cobalt. The particles further include at least one of boron, carbon, chromium, manganese, molybdenum, nitrogen, niobium, phosphorous, sulfur, aluminum, bismuth, silicon, tin, tantalum, titanium, vanadium, tungsten, hafnium, and zirconium. The particles are formed by atomizing and optionally heat treating. The particles consist of a first area and a second area, wherein the first area is copper-rich and the second area includes hard phases. The hard phases being present in an amount of at least 33 wt. %, based on the total weight of the second area.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Inventors: Philippe Beaulieu, Mathieu Boisvert, Denis B. Christopherson, JR.
  • Publication number: 20180104746
    Abstract: An improved method of manufacturing a cast part by sand casting, permanent mold casting, investment casting, lost foam casting, die casting, or centrifugal casting, or a powder metal material by water, gas, plasma, ultrasonic, or rotating disk atomization is provided. The method includes adding at least one additive to a melted metal material before or during the casting or atomization process. The at least one additive forms a protective gas atmosphere surrounding the melted metal material which is at least three times greater than the volume of melt to be treated. The protective atmosphere prevents introduction or re-introduction of contaminants, such as sulfur (S) and oxygen (O2), into the material. The cast parts or atomized particles produced include at least one of the following advantages: less internal pores, less internal oxides, median circularity of at least 0.60, median roundness of at least 0.60 and increased sphericity of microstructural phases and/or constituents.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 19, 2018
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Publication number: 20180104745
    Abstract: An improved method of manufacturing a powder metal material by water, gas, plasma, or rotating disk atomization is provided. The method includes adding at least one additive to a melted metal material before or during the atomization process. The at least one additive forms a protective gas atmosphere surrounding the melted metal material which is at least three times greater than the volume of melt to be treated. The protective atmosphere prevents introduction or re-introduction of contaminants, such as sulfur (S) and oxygen (O2), into the material. The atomized particles produced include at least one of the following advantages: median circularity of at least 0.60, median roundness of at least 0.60, less internal pores, less internal oxides, and an increased sphericity of the microstructural phases and/or constituents.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 19, 2018
    Inventors: Gilles L'ESPERANCE, Mathieu BOISVERT, Denis B. CHRISTOPHERSON, JR., Philippe BEAULIEU
  • Publication number: 20180105906
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: October 16, 2017
    Publication date: April 19, 2018
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.