Patents by Inventor Mathieu Charbonneau

Mathieu Charbonneau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230159348
    Abstract: A process for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum. The process comprises: reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (iii) at least one metal chosen from manganese and aluminum with sodium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising sodium sulfate; separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising sodium sulfate to an electromembrane process for converting the sodium sulfate into sodium hydroxide; and reusing the sodium hydroxide obtained by the electromembrane process for reacting with the metal sulfate.
    Type: Application
    Filed: December 28, 2022
    Publication date: May 25, 2023
    Applicant: NEMASKA LITHIUM INC.
    Inventors: Guy BOURASSA, Jean-François MAGNAN, Nicolas LAROCHE, Thomas BIBIENNE, Mathieu CHARBONNEAU, Mickaël DOLLÉ
  • Patent number: 11646384
    Abstract: An optoelectronic module may include one or more non-rectangular optoelectronic dies e.g., light emitting diodes and photodiodes, arranged to maximize the usage of surface area when mounted to a base circuit board. Multi-axis and non-orthogonal axis dicing processes can be used to form the dies which have non-rectangular shapes.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: May 9, 2023
    Assignee: Apple Inc.
    Inventors: Mathieu Charbonneau-Lefort, Saahil Mehra, Tongbi T. Jiang, Saijin Liu
  • Patent number: 11542175
    Abstract: There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum, the process comprising: reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate; separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium hydroxide respectively; reusing the s
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: January 3, 2023
    Assignee: NEMASKA LITHIUM INC.
    Inventors: Guy Bourassa, Jean-François Magnan, Nicolas Laroche, Thomas Bibienne, Mathieu Charbonneau, Mickaël Dollé
  • Publication number: 20220254941
    Abstract: An optoelectronic module may include one or more non-rectangular optoelectronic dies e.g., light emitting diodes and photodiodes, arranged to maximize the usage of surface area when mounted to a base circuit board. Multi-axis and non-orthogonal axis dicing processes can be used to form the dies which have non-rectangular shapes.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Mathieu Charbonneau-Lefort, Saahil Mehra, Tongbi T. Jiang, Saijin Liu
  • Publication number: 20220242746
    Abstract: There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium, copper, magnesium and aluminum, the process comprising: reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium, copper, magnesium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate; separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium
    Type: Application
    Filed: May 22, 2020
    Publication date: August 4, 2022
    Applicant: NEMASKA LITHIUM INC.
    Inventors: Thomas BIBIENNE, Nicolas LAROCHE, Jean-François MAGNAN, Guy BOURASSA, Mathieu CHARBONNEAU, Mickaël DOLLÉ, David DEAK
  • Publication number: 20220167864
    Abstract: An electronic device including optical sensing with a concentric architecture and methods for operation thereof is disclosed. The concentric architecture can include light detector(s) arranged in a concentric manner around light emitter(s). In some examples, at least one light emitter can be located in the center of the device, and each light detector can be located the same separation distance from the light emitter. Each light detector can be arranged such that the separation distance from the centrally located light emitter can be greater than the separation distance from another light emitter. Examples of the disclosure further include a selective transparent layer overlaying the light detector(s). The selective transparent layer can include section(s) transparent to a first wavelength range and non-transparent to a second wavelength ranges. In some examples, the selective transparent layer can further include section(s) transparent to the second wavelength range.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Ueyn L. Block, Guocheng Shao, Itaru L. Hiromi, Mathieu Charbonneau-LeFort, Tobias J. Harrison-Noonan
  • Patent number: 11266320
    Abstract: An electronic device including optical sensing with a concentric architecture and methods for operation thereof is disclosed. The concentric architecture can include light detector(s) arranged in a concentric manner around light emitter(s). In some examples, at least one light emitter can be located in the center of the device, and each light detector can be located the same separation distance from the light emitter. Each light detector can be arranged such that the separation distance from the centrally located light emitter can be greater than the separation distance from another light emitter. Examples of the disclosure further include a selective transparent layer overlaying the light detector(s). The selective transparent layer can include section(s) transparent to a first wavelength range and non-transparent to a second wavelength ranges. In some examples, the selective transparent layer can further include section(s) transparent to the second wavelength range.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 8, 2022
    Assignee: Apple Inc.
    Inventors: Ueyn L. Block, Guocheng Shao, Itaru L. Hiromi, Mathieu Charbonneau-Lefort, Tobias J. Harrison-Noonan
  • Publication number: 20220002168
    Abstract: There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum, the process comprising: reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate; separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium hydroxide respectively; reusing the s
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: NEMASKA LITHIUM INC.
    Inventors: Guy BOURASSA, Jean-François MAGNAN, Nicolas LAROCHE, Thomas BIBIENNE, Mathieu CHARBONNEAU, Mickaël DOLLÉ
  • Patent number: 11142466
    Abstract: There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum, the process comprising: reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate; separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium hydroxide respectively; reusing the sodi
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: October 12, 2021
    Assignee: NEMASKA LITHIUM INC.
    Inventors: Guy Bourassa, Jean-François Magnan, Nicolas Laroche, Thomas Bibienne, Mathieu Charbonneau, Mickaël Dollé
  • Publication number: 20210161444
    Abstract: This relates to an electronic device configured for optical sensing having shared windows and including light restriction designs. The light restriction designs can include one or more of optical layers, optical films, lenses, and window systems configured to reduce or eliminate crosstalk between optical components. A plurality of accepting sections and a plurality of blocking sections can be employed to selectively allow light having an angle of incidence within one or more acceptance viewing angles and block light with angles of incidence outside of the acceptance viewing angles. In some examples, the light restriction designs can include variations in optical and structural properties can allow the light restriction designs to have spatially varying acceptance angles. Variations in structural properties can include, but are not limited to, differences in widths, heights, and/or tilts of the accepting sections and/or blocking sections.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Guocheng Shao, Mathieu Charbonneau-Lefort, Ueyn L. Block
  • Patent number: 10918322
    Abstract: This relates to an electronic device configured for optical sensing having shared windows and including light restriction designs. The light restriction designs can include one or more of optical layers, optical films, lenses, and window systems configured to reduce or eliminate crosstalk between optical components. A plurality of accepting sections and a plurality of blocking sections can be employed to selectively allow light having an angle of incidence within one or more acceptance viewing angles and block light with angles of incidence outside of the acceptance viewing angles. In some examples, the light restriction designs can include variations in optical and structural properties can allow the light restriction designs to have spatially varying acceptance angles. Variations in structural properties can include, but are not limited to, differences in widths, heights, and/or tilts of the accepting sections and/or blocking sections.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Guocheng Shao, Mathieu Charbonneau-Lefort, Ueyn L. Block
  • Publication number: 20200407237
    Abstract: There are provided processes for preparing a metal hydroxide comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum, the process comprising reacting a metal sulfate comprising (i) at least one metal chosen from nickel and cobalt and optionally (ii) at least one metal chosen from manganese, lithium and aluminum with lithium hydroxide, sodium hydroxide and/or potassium hydroxide and optionally a chelating agent in order to obtain a solid comprising the metal hydroxide and a liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate: separating the liquid and the solid from one another to obtain the metal hydroxide; submitting the liquid comprising lithium sulfate, sodium sulfate and/or potassium sulfate to an electromembrane process for converting the lithium sulfate, sodium sulfate and/or potassium sulfate into lithium hydroxide, sodium hydroxide and/or potassium hydroxide respectively; reusing the sodiu
    Type: Application
    Filed: November 22, 2018
    Publication date: December 31, 2020
    Applicant: NEMASKA LITHIUM INC.
    Inventors: Guy BOURASSA, Jean-François MAGNAN, Nicolas LAROCHE, Thomas BIBIENNE, Mathieu CHARBONNEAU, Mickaël DOLLÉ
  • Publication number: 20190090766
    Abstract: An electronic device including optical sensing with a concentric architecture and methods for operation thereof is disclosed. The concentric architecture can include light detector(s) arranged in a concentric manner around light emitter(s). In some examples, at least one light emitter can be located in the center of the device, and each light detector can be located the same separation distance from the light emitter. Each light detector can be arranged such that the separation distance from the centrally located light emitter can be greater than the separation distance from another light emitter. Examples of the disclosure further include a selective transparent layer overlaying the light detector(s). The selective transparent layer can include section(s) transparent to a first wavelength range and non-transparent to a second wavelength ranges. In some examples, the selective transparent layer can further include section(s) transparent to the second wavelength range.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 28, 2019
    Inventors: Ueyn L. BLOCK, Guocheng SHAO, Itaru L. HIROMI, Mathieu CHARBONNEAU-LEFORT, Tobias J. HARRISON-NOONAN
  • Publication number: 20180228414
    Abstract: This relates to an electronic device configured for optical sensing having shared windows and including light restriction designs. The light restriction designs can include one or more of optical layers, optical films, lenses, and window systems configured to reduce or eliminate crosstalk between optical components. A plurality of accepting sections and a plurality of blocking sections can be employed to selectively allow light having an angle of incidence within one or more acceptance viewing angles and block light with angles of incidence outside of the acceptance viewing angles. In some examples, the light restriction designs can include variations in optical and structural properties can allow the light restriction designs to have spatially varying acceptance angles. Variations in structural properties can include, but are not limited to, differences in widths, heights, and/or tilts of the accepting sections and/or blocking sections.
    Type: Application
    Filed: January 18, 2018
    Publication date: August 16, 2018
    Inventors: Guocheng SHAO, Mathieu CHARBONNEAU-LEFORT, Ueyn L. BLOCK
  • Patent number: 9983376
    Abstract: High-data-rate interconnect cables are disclosed, wherein electrical data signals are transmitted in a conductor assembly made of a thin metal layer surrounding a cylindrical support member. The cylindrical support member can be a high-resistivity conductor or a dielectric, such as a glass optical waveguide that supports the transmission of optical signals. The cylindrical support member can also be a core conductor that supports the transmission of electrical power and low-frequency auxiliary signals. The high-data-rate interconnect cables are self-equalizing, so that a data link transmission system that employs the high-data-rate interconnect cable does not require active equalization.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 29, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Mathieu Charbonneau-Lefort, Rostislav Radiyevich Khrapko, William Richard Trutna, Richard Clayton Walker
  • Patent number: 9497525
    Abstract: Optical engines and optical cable assemblies incorporating optical engines providing duty cycle correction on multiplexed low-speed signals are disclosed. In one embodiment, an optical engine includes a low-speed Tx line, a low-speed Rx line, an optical transceiver device, and a control circuit. A low-speed Tx signal is transmitted on the low-speed Tx line and a low-speed Rx signal is received on the low-speed Rx line. The optical transceiver device further includes a laser control pin operable to control a laser configured to provide light on an optical Tx lane, and an optical detect pin operable to provide an indication as to light detected at an optical Rx lane. A Tx signal conditioning circuit configured to condition the low-speed Tx signal is coupled to the laser control pin, and/or a Rx signal conditioning circuit configured to condition the low-speed Rx signal is coupled to the optical detect pin.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: November 15, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Mathieu Charbonneau-Lefort, Richard Clayton Walker, Michael John Yadlowsky
  • Publication number: 20160314876
    Abstract: High-data-rate interconnect cables are disclosed, wherein electrical data signals are transmitted in a conductor assembly made of a thin metal layer surrounding a cylindrical support member. The cylindrical support member can be a high-resistivity conductor or a dielectric, such as a glass optical waveguide that supports the transmission of optical signals. The cylindrical support member can also be a core conductor that supports the transmission of electrical power and low-frequency auxiliary signals. The high-data-rate interconnect cables are self-equalizing, so that a data link transmission system that employs the high-data-rate interconnect cable does not require active equalization.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 27, 2016
    Inventors: Mathieu Charbonneau-Lefort, Rostislav Radiyevich Khrapko, William Richard Trutna, Richard Clayton Walker
  • Patent number: 9435963
    Abstract: Fiber optic interface modules and assemblies using same are disclosed, wherein the modules and assemblies are tolerant to misalignment and have a high coupling efficiency. The module has at least one lens that defines a folded optical path through the module body. The folded optical path is formed by total internal reflection within the module body from an angled wall of the module. The lens has an aspheric front surface and a planar rear surface and is configured to have an optimum tolerance to a lateral misalignment relative to a light source while maintaining a high coupling efficiency between the light source and an optical fiber.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: September 6, 2016
    Assignee: CORNING CABLE SYSTEMS LLC
    Inventor: Mathieu Charbonneau-Lefort
  • Patent number: 9294290
    Abstract: Optical cable assemblies, optical engines, and methods for transitioning into and out of a sleep mode are disclosed. In one embodiment, a method of operating a sleep mode of an optical cable assembly includes receiving a sleep trigger, and for a time T1, turning a laser of an optical transmit (Tx) lane of an optical transceiver device on or off, and providing a fixed logical high or a fixed logical low on low-speed receive (Rx) line of the optical cable assembly based on a connection state of an electrical connector of the optical cable assembly. The method further includes, after the time T1, turning off the laser of the optical Tx lane, placing one or more components of the optical transceiver device into a low-power state, and periodically transmitting an optical intra-cable signal from the optical transceiver device over optical fiber to a far end of the optical cable assembly.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: March 22, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Mathieu Charbonneau-Lefort, Michael John Yadlowsky
  • Publication number: 20160080843
    Abstract: Optical engines and optical cable assemblies incorporating optical engines providing duty cycle correction on multiplexed low-speed signals are disclosed. In one embodiment, an optical engine includes a low-speed Tx line, a low-speed Rx line, an optical transceiver device, and a control circuit. A low-speed Tx signal is transmitted on the low-speed Tx line and a low-speed Rx signal is received on the low-speed Rx line. The optical transceiver device further includes a laser control pin operable to control a laser configured to provide light on an optical Tx lane, and an optical detect pin operable to provide an indication as to light detected at an optical Rx lane. A Tx signal conditioning circuit configured to condition the low-speed Tx signal is coupled to the laser control pin, and/or a Rx signal conditioning circuit configured to condition the low-speed Rx signal is coupled to the optical detect pin.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 17, 2016
    Inventors: Mathieu Charbonneau-Lefort, Richard Clayton Walker, Michael John Yadlowsky