Patents by Inventor Matt H. Summers

Matt H. Summers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10023505
    Abstract: A method of producing a propellant material element, such as an electrically-operated propellant material, includes extruding a propellant material through a heated nozzle. The nozzle may be heated to a temperature that is above the boiling point of a solvent that is part of the propellant material, yet is below a decomposition temperature of the propellant material. This allows some of the solvent to be driven off during the extruding process, while still preventing initiation of an energy-creating reaction within the material. The heating of the material in the extruding process, and especially the heating of the nozzle that the material is extruded through, may be controlled to remove an amount of solvent that results in the extruded material having desirable properties.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: July 17, 2018
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Patent number: 10018456
    Abstract: An open-loop thermal control system and method for components that generate heat includes a reservoir for containing a pressurized working fluid, a first heat exchanger in thermal communication with the working fluid, a Joule-Thomson expansion valve in fluid communication with the reservoir, and a second heat exchanger in fluid communication with the valve. The first heat exchanger is configured to transfer heat from the components to the fluid in the reservoir. The valve is configured to expand the working fluid into a two-phase fluid having a primary use of cooling. The second heat exchanger is configured to receive heat from the components and receive the two-phase fluid. The second heat exchanger provides a single-phase working fluid for at least one secondary use before the working fluid is expelled from the thermal control system.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: July 10, 2018
    Assignee: RAYTHEON COMPANY
    Inventors: Paul M. Lyons, Jeremy C. Danforth, Jeff L. Vollin, Matt H. Summers
  • Publication number: 20180128207
    Abstract: Electrically operated propellant is used to supplement the thrust provided by solid rocket motor (SRM) propellant to manage thrust produced by a SRM. The gas produced by burning the electrically operated propellant may be injected upstream of the nozzle to add mass and increase chamber pressure Pc, injected at the throat of the nozzle to reduce the effect throat area At to increase chamber pressure Pc or injected downstream of the throat to provide thrust vector control or a combination thereof. Certain types of electrically operated propellants can be turned on and off provided the chamber pressure Pc does not exceed a self-sustaining threshold pressure eliminating the requirement for physical control valves.
    Type: Application
    Filed: September 23, 2016
    Publication date: May 10, 2018
    Inventors: James K. Villarreal, Mark T. Langhenry, Matt H. Summers
  • Publication number: 20180058377
    Abstract: An actuator produces a displacement that maintains positive contact between an electrically operated propellant and a pair of electrodes to ignite and sustain combustion of an ignition surface. The electrodes are suitably configured such that current lines between the electrodes follow equipotential surfaces through the propellant. The displacement drives a contour of the ignition surface to substantially match an equipotential surface corresponding to a maximum and uniform current density J at a minimum gap between the electrodes to ignite and combust the entire ignition surface. The flat, angled or curved contact areas of the electrodes are suitably symmetric about a plane.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 1, 2018
    Inventors: James K. Villarreal, Thomas W. Villarreal, Frederick B. Koehler, Mark T. Langhenry, Matt H. Summers
  • Publication number: 20180051657
    Abstract: Microwave energy is used to ignite and control the ignition of electrically operated propellant to produce high-pressure gas. The propellant includes conductive particles that act as a free source of electrons. Incoming microwave energy accumulates electric charge in an attenuation zone, which is discharged in the form of dielectric breakdowns to create local randomly oriented currents. The propellant also includes polar molecules. The polar molecules in the attenuation zone absorb microwave energy causing the molecules to rapidly vibrate thereby increasing the temperature of the propellant. The increase in temperature and the local current densities together establish an ignition condition to ignite and sustain ignition of an ignition surface of the attenuation zone as the zone regresses without igniting the remaining bulk of the propellant.
    Type: Application
    Filed: August 18, 2016
    Publication date: February 22, 2018
    Inventors: James K. Villarreal, Jeremy C. Danforth, Matt H. Summers, Daniel K. Johnson, Mark T. Langhenry
  • Publication number: 20180003130
    Abstract: Electrical ignition of electrically operated propellant in a gas generation system provides an ignition condition at an ignition surface between a pair of electrodes that satisfies three criteria of a current density J that exhibits a decreasing gradient along an axis normal to an ignition surface, is substantially constant across the ignition surface and exceeds an ignition threshold at the ignition surface. These criteria may be satisfied by one or more of an angled electrode configuration, a segmented electrode configuration or an additive to the electrically operated propellant that modifies its conductivity. These configurations improve burn rate control and consumption of the available propellant and are scalable to greater propellant mass to support larger gas generation systems.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Matt H. Summers, James K. Villarreal, Mark T. Langhenry, Jeremy C. Danforth, John W. Walter
  • Publication number: 20170283095
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20170284339
    Abstract: A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20170253536
    Abstract: A device may include an electrically-operated propellant or energetic gas-generating material, additively manufactured together with electrodes for producing a reaction in the material. The device may also include a casing that is additively manufactured with the other components. The additive manufacturing may be accomplished by extruding or otherwise depositing raw materials for the different components where desired. The electrodes may be made of a conductive polymer material, for example using an electrically-conductive fill in a polymer.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Publication number: 20170253537
    Abstract: A method of producing a propellant material element, such as an electrically-operated propellant material, includes extruding a propellant material through a heated nozzle. The nozzle may be heated to a temperature that is above the boiling point of a solvent that is part of the propellant material, yet is below a decomposition temperature of the propellant material. This allows some of the solvent to be driven off during the extruding process, while still preventing initiation of an energy-creating reaction within the material. The heating of the material in the extruding process, and especially the heating of the nozzle that the material is extruded through, may be controlled to remove an amount of solvent that results in the extruded material having desirable properties.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Publication number: 20170234268
    Abstract: A hybrid rocket motor includes a solid fuel element, and an oxidizer tank containing an oxidizer. The solid fuel element adjoins and at least partially defines a combustion chamber in which the solid fuel and the oxidizer are burned, to produce thrust from the hybrid rocket motor. The oxidizer tank is at least partially within the combustion chamber, and the entire oxidizer tank may be within the combustion chamber. The oxidizer tank may be protected by an insulating material, which may also serve as a structural material that contains the pressure of the oxidizer. The insulating material and the fuel material may both be polymer-based materials, although they may be different materials having different characteristics, for example including different additives to the same polymer material. The fuel element and the oxidizer tank may be made by additive manufacturing processes, for example by adding different materials in different locations.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventors: Matt H. Summers, Jeremy C. Danforth
  • Publication number: 20170131078
    Abstract: An open-loop thermal control system and method for components that generate heat includes a reservoir for containing a pressurized working fluid, a first heat exchanger in thermal communication with the working fluid, a Joule-Thomson expansion valve in fluid communication with the reservoir, and a second heat exchanger in fluid communication with the valve. The first heat exchanger is configured to transfer heat from the components to the fluid in the reservoir. The valve is configured to expand the working fluid into a two-phase fluid having a primary use of cooling. The second heat exchanger is configured to receive heat from the components and receive the two-phase fluid. The second heat exchanger provides a single-phase working fluid for at least one secondary use before the working fluid is expelled from the thermal control system.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Paul M. Lyons, Jeremy C. Danforth, Jeff L. Vollin, Matt H. Summers
  • Publication number: 20170113817
    Abstract: A spacecraft, such as a satellite, uses a shape memory polymer actuator to deploy one or more deployable parts. The shape memory polymer actuator may be formed integrally with a deployable part and/or with a fuselage or other structure of the spacecraft, with the shape memory polymer actuator being for example a relatively thin portion of the shape memory polymer material of the integral structure. The shape memory actuator allows deployment of the deployable part(s) upon heating of the shape memory polymer material of the actuator, such as after the satellite has been launched into space. The heating may be caused by a heat source that is part of the spacecraft itself, or may be merely the result of exposing the spacecraft to solar heating after launch. The deployable part of the spacecraft may include any of a wide variety of parts that are used after launch.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 27, 2017
    Inventors: Frederick B. Koehler, Ward D. Lyman, Matt H. Summers, Jeremy C. Danforth
  • Publication number: 20170097213
    Abstract: A gas generation system for generating gases, such as for use as or as part of a rocket motor in propelling a projectile, includes two or more propellant charges and electrically operated propellant initiators operatively coupled to respective of the propellant charges, to initiate combustion in the propellant charges, wherein the propellant charges are operatively isolated from one another such that the propellant charges can be individually initiated and are not ignited due to gases generated from other of the propellant charges being combusted.
    Type: Application
    Filed: October 6, 2015
    Publication date: April 6, 2017
    Inventors: James Kendall Villarreal, Mark T. Langhenry, Matt H. Summers, Daniel V. Macinnis
  • Publication number: 20160355447
    Abstract: A combustible element includes regions of fuel material interspersed with regions of oxidizer material. The element may be made by additive manufacturing processes, such as three-dimensional printing, with the fuel material regions and the oxidizer material regions placed in appropriate locations in layer of the combustible element. For example, different extruders may be used to extrude and deposit portions of a fuel filament and an oxidizer filament at different locations in each layer of the combustible element. The combustible element may define a combustion chamber within the element, where combustion occurs when the combustible element is ignited. The fuel material and the oxidizer material may be selected, and their relative amounts may be controlled, such that desired relative amounts of fuel and oxidizer are present for combustion with desired characteristics, such as combustion rate.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 8, 2016
    Inventors: Jeremy C. Danforth, Mark T. Langhenry, Matt H. Summers, Teresa Perdue
  • Publication number: 20160356245
    Abstract: A nozzleless hybrid rocket motor includes a fuel element that defines a combustion chamber therewithin, in which combustion of the fuel and an oxidizer occurs. The combustion gases produced by the combustion between the fuel and the oxidizer transition to supersonic flow before leaving the fuel element, eliminating the need for a separate nozzle. The fuel element may be a part of a structural element of a vehicle, for example being a part of a fuselage, wing, fairing, or other part of a space vehicle or an air vehicle, with the fuel element an integral and continuous part of the structural element. Combustion of part of the fuel element may allow vehicle structure to be used to provide thrust, such as for maneuver, consuming part of the structure. The fuel element may be made by an additive manufacturing process.
    Type: Application
    Filed: June 3, 2015
    Publication date: December 8, 2016
    Inventors: Jeremy C. Danforth, Teresa Perdue, Mark T. Langhenry, Matt H. Summers
  • Patent number: 9457761
    Abstract: The rate of combustion of an electrically operated propellant having self-sustaining threshold of at least 1,000 psi is controlled to produce chamber pressures that are sufficient to produce a desired pressure profile in the airbag to accommodate a range of human factors and crash conditions yet never exceeding the self-sustaining threshold. The combustion of the propellant is extinguished to control the total pressure impulse delivered to the airbag. Propellants formed with an ionic perchlorate-based oxidizer have demonstrated thresholds in excess of 1,500 psi and higher.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: October 4, 2016
    Assignee: Raytheon Company
    Inventors: James K. Villarreal, Thomas M. Deppert, Mark T. Langhenry, Matt H. Summers
  • Publication number: 20150343988
    Abstract: The rate of combustion of an electrically operated propellant having self-sustaining threshold of at least 1,000 psi is controlled to produce chamber pressures that are sufficient to produce a desired pressure profile in the airbag to accommodate a range of human factors and crash conditions yet never exceeding the self-sustaining threshold. The combustion of the propellant is extinguished to control the total pressure impulse delivered to the airbag. Propellants formed with an ionic perchlorate-based oxidizer have demonstrated thresholds in excess of 1,500 psi and higher.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicant: Raytheon Company
    Inventors: James K. Villarreal, Thomas M. Deppert, Mark T. Langhenry, Matt H. Summers